Из чего состоит нуклеотид и что это такое

История

В домолекулярной генетике для обозначения наименьшего элемента в структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации, применялся особый термин рекон. В настоящее время показано, что таким наименьшим элементом является один нуклеотид (или одно азотистое основание в составе нуклеотида), поэтому данный термин более не употребляется. Для определения понятия единица мутации применялся термин мутон. В настоящее время показано, что фенотипически мутация может проявиться даже при замене одного нуклеотида (или азотистого основания в составе нуклеотида), таким образом, термин мутон соответствует одному нуклеотиду.

Хромосома: определение и описание

Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.

Чем отличаются хромосомы друг от друга

На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:

  1.  В перекрестии хромосомы, пересекаясь точно посередине друг друга.
  2.  Там же, но пересекаясь не точно.

Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.

Науке известных хромосомы трёх основных форм:

  •  Х хромосома, которая встречается у женщин и у мужчин.
  •  Y хромосома, встречающаяся только у мужчин.
  •  В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.

Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.

Связывание нуклеотидов

Для создания цепей полимера (или нескольких единиц), которые приводят к образованию РНК и ДНК, нуклеотиды соединяются друг с другом через сахарофосфатный скелет, который образуется, когда фосфат одного нуклеотида присоединяется к сахару другого. Это возможно благодаря сильным ковалентным связям, называемым фосфодиэфирными связями.

Поскольку ДНК представляет собой двухцепочечную молекулу, две из этих полимерных цепей должны присоединяться друг к другу, как лестница. «Ступеньки» состоят из пар нуклеотидов, которые соединяют две стороны лестницы с помощью водородных связей. Что такое нуклеотид? Это структурная единица ДНК, которая состоит из азотистого основания и сахар-фосфатной основной цепи, состоящей из фосфатной группы и сахара. ДНК состоит из многих нуклеотидов, которые содержат и защищают генетические коды организма.

История

В домолекулярной генетике для обозначения наименьшего элемента в структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации, применялся особый термин рекон. В настоящее время показано, что таким наименьшим элементом является один нуклеотид (или одно азотистое основание в составе нуклеотида), поэтому данный термин более не употребляется. Для определения понятия единица мутации применялся термин мутон. В настоящее время показано, что фенотипически мутация может проявиться даже при замене одного нуклеотида (или азотистого основания в составе нуклеотида), таким образом, термин мутон соответствует одному нуклеотиду.

Структура молекулы ДНК

Молекула ДНК, так же как и белка, может иметь первичную, вторичную и третичную структуру.

Последовательность нуклеотидов в цепи ДНК определяет ее первичную структуру. Вторичная структура формируется за счет водородных связей, в основе возникновения которых положен принцип комплементарности. Другими словами, при синтезе двойной спирали ДНК действует определенная закономерность: аденин одной цепи соответствует тимину другой, гуанин – цитозину, и наоборот. Пары аденина и тимина или гуанина и цитозина образуются за счет двух в первом и трех в последнем случае водородных связей. Такое соединение нуклеотидов обеспечивает прочную связь цепей и равное расстояние между ними.

Зная последовательность нуклеотидов одной цепи ДНК, по принципу комплементарности или дополнения можно достроить вторую.

Третичная структура ДНК образована за счет сложных трехмерных связей, что делает ее молекулу более компактной и способной размещаться в малом объеме клетки. Так, например, длина ДНК кишечной палочки составляет более 1 мм, тогда как длина клетки — меньше 5 мкм.

Число нуклеотидов в ДНК, а именно их количественное соотношение, подчиняется правилу Чергаффа (число пуриновых оснований всегда равно количеству пиримидиновых). Расстояние между нуклеотидами – величина постоянная, равная 0,34 нм, как и их молекулярная масса.

14 . Рибонуклеиновые кислоты, их виды, строение, назначение.

   РНК —
класс нуклеиновых
кислот,линейных полимеровнуклеотидов,
в состав которых входят остаток фосфорной
кислоты, рибоза (в отличие отДНК,
содержащей дезоксирибозу) и азотистые
основания -аденин,цитозин,гуанини
урацил (в отличие от ДНК, содержащий
вместо урацила тимин). Эти молекулы
содержатся в клетках всех живых
организмов, а также в некоторых
вирусов.
РНК содержатся главным образом
вцитоплазме
клеток. Эти
молекулы синтезируются в клетках всех
клеточных живых организмов, а также
содержатся в вироидах и некоторых
вирусах. 

Основные функции РНК в
клеточных организмах — это шаблон для
трансляции генетической информации в
белки и поставка соответствующих
аминокислот к рибосомам. В вирусах
является носителем генетической
информации (кодирует белки оболочки и
ферменты вирусов).

Структура
РНК
.

Молекула
имеет однонитевое строение. Полимер. В
результате взаимодействия нуклеотидов
друг с другом молекула РНК приобретает
вторичную структуру, различной формы
(спираль, глобула и т.д.). Мономером РНК
является нуклеотид (молекула, в состав
которой входит азотистое основание,
остаток фосфорной кислоты и сахар
(пептоза)). РНК напоминает по своему
строению одну цепь ДНК. Нуклеотиды,
входящие в состав РНК: гуанин, аденин,
цитозин, урацил. Аденин и гуанин относятся
к пуриновым основаниям, цитозин и урацил
к пиримидиновым. В отличие от молекулы
ДНК, в качестве углеводного компонента
рибонуклеиновой кислоты выступает не
дезоксирибоза, а рибоза. Вторым
существенным отличием в химическом
строении РНК от ДНК является отсутствие
в молекуле рибонуклеиновой кислоты
такого нуклеотида как тимин. В
РНК он заменён на урацил.

Виды
и типы РНК клеток.

Существуют
три типа РНК, каждый из которых выполняет
свою особую роль в синтезе белка.

1.
Матричная
РНК

переносит генетический код из ядра в
цитоплазму, определяя таким образом
синтез разнообразных белков.

2.
Транспортная
РНК

переносит активированные аминокислоты
к рибосомам для синтеза полипептидных
молекул.

3.
Рибосомная
РНК

в комплексе примерно с 75 разными белками
формирует рибосомы — клеточные органеллы,
на которых происходит сборка полипептидных
молекул.

Матричная
РНК

представляет собой длинную одноцепочечную
молекулу, присутствующую в цитоплазме.
Эта молекула РНК содержит от нескольких
сотен до нескольких тысяч нуклеотидов
РНК, образующих кодоны, строго
комплементарные триплетам ДНК.

Еще
один тип РНК, играющий важнейшую роль
в синтезе белка, называют транспортной
РНК
,
поскольку он транспортирует аминокислоты
к строящейся молекуле белка. Каждая
транспортная РНК специфически связывается
только с одной из 20 аминокислот,
составляющих белковые молекулы.
Транспортные РНК действуют как переносчики
специфических аминокислот, доставляя
их к рибосомам, на которых происходит
сборка полипептидных молекул.

Каждая
специфическая транспортная РНК распознает
«свой» кодон матричной РНК, прикрепившейся
к рибосоме, и доставляет соответствующую
аминокислоту на соответствующую позицию
в синтезируемой полипептидной цепи.
Цепь транспортной РНК гораздо короче
матричной РНК, содержит всего около 80
нуклеотидов и упакована в форме клеверного
листа. На одном конце транспортной РНК
всегда находится аденозинмонофосфат
(АМФ), к которому через гидроксильную
группу рибозы прикрепляется транспортируемая
аминокислота. Транспортные РНК служат
для прикрепления специфических
аминокислот к строящейся полипептидной
молекуле, поэтому необходимо, чтобы
каждая транспортная РНК обладала
специфичностью и в отношении соответствующих
кодонов матричной РНК. Код, посредством
которого транспортная РНК распознает
соответствующий кодон на матричной
РНК, также является триплетом и его
называют антикодоном. Антикодон
располагается примерно посередине
молекулы транспортной РНК. Во время
синтеза белка азотистые основания
антикодона транспортной РНК прикрепляются
с помощью водородных связей к азотистым
основаниям кодона матричной РНК. Таким
образом, на матричной РНК выстраиваются
в определенном порядке одна за другой
различные аминокислоты, формируя
соответствующую аминокислотную
последовательность синтезируемого
белка.

Строение и функции РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3′-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Состав нуклеиновых кислот

В нуклеиновых кислотах сахар представлен пентозой. Это пятиуглеродный сахар, в ДНК его называют дезоксирибозой, в РНК – рибозой. Каждая молекула пентозы имеет пять атомов углерода, четыре из них вместе с атомом кислорода образуют пятичленное кольцо, а пятый входит в группу НО-СН2.

Положение каждого атома углерода в молекуле пентозы обозначается арабской цифрой со штрихом (1C´, 2C´, 3C´, 4C´, 5C´). Поскольку все процессы считывания наследственной информации с молекулы нуклеиновой кислоты имеют строгую направленность, нумерация атомов углерода и их расположение в кольце служат своего рода указателем правильного направления.

По гидроксильной группе к третьему и пятому углеродным атомам (3С´ и 5С´) присоединен остаток фосфорной кислоты. Он и определяет химическую принадлежность ДНК и РНК к группе кислот.

К первому углеродному атому (1С´) в молекуле сахара присоединено азотистое основание.

Не только белки

Но белками все не исчерпывается. Проект «Геном человека» показал, что кроме матричных, транспортных и рибосомных РНК существует еще множество типов РНК, не менее важных для жизни.

РНК подразделяются на некодирующие РНК (нкРНК), которые не транслируются в белки, и кодирующие, или матричные РНК (мРНК), служащие матрицей для синтеза белков. У некодирующих РНК более сложная классификация. Они бывают инфраструктурными и регуляторными. Инфраструктурные РНК известны нам из школьных учебников — это рибосомные РНК (рРНК) и транспортные РНК (тРНК). Молекулы рРНК составляют основу рибосомы — молекулярной машины, которая и строит белок на матричной РНК (проводит трансляцию). Последовательность из трех нуклеотидов в мРНК указывает, какую аминокислоту следуют включить в белок. Молекулы тРНК приносят указанные аминокислоты на рибосомы в ходе трансляции.

Регуляторные нкРНК очень широко представлены в организме, классифицируются в зависимости от размера и выполняют важные функции (см. таблицу 1). По сравнению с генами белков, длина которых обычно измеряется в килобазах — тысячах пар нуклеотидов, а точнее, в десятках и сотнях тысяч пар, они совсем маленькие (что не облегчает поиск их генов). Но рычажку «вкл.—выкл.» и не надо быть большим.

Таблица 1. Некодирующие регуляторные РНК

Название Длина(нуклеотиды) Функции
Длинные некодирующие РНК
(днкРНК, lncRNA)
200 1. Регулируют избирательное метилирование ДНК
2. Руководят избирательной посадкой на хроматин белковых
комплексов, подавляющих активность генов
Малые РНК
Малые ядерные РНК (мяРНК, snRNA) 150 1. Участвуют в сплайсинге
2. Регулируют активность факторов транскрипции
3. Поддерживают целостность теломер
Малые ядрышковые РНК (мякРНК, snoRNA) 60–300 1. Участвуют в химической модификации рРНК, тРНК и мяРНК
2. Возможно, участвуют в стабилизации структуры рРНК и защите
от действия ферментов гидролаз
Малые интерферирующие РНК (миРНК, siRNA) 21–22 1. Обеспечивают антивирусную иммунную защиту
2. Подавляют активность собственных генов
МикроРНК (мкРНК, miRNA) 18–25 Подавляют трансляцию путем РНК-интерференции
Антисмысловые РНК (asRNA) 1. Короткие: менее 200
2. Длинные: более 200
Блокируют трансляцию, образуя гибриды с мРНК
РНК, связанные с белками Piwi (piRNA, piwiRNA) 26–32 Их называют «стражами генома», они подавляют активность мобильных генетических элементов во время эмбриогенеза

Таким образом, прежде чем ответить на вопрос: «Сколько у нас генов?», необходимо понять, что «ген» может кодировать не только белок. Собственно, это ясно уже давно

Основное внимание проекта «Геном человека» было направлено на белок-кодирующие гены. Однако уже в первом докладе о геноме, опубликованном в 2001 году, сказано, что «тысячи генов человека продуцируют некодирующие РНК (нкРНК), являющиеся их конечным продуктом», хотя на тот момент было известно лишь около 706 генов нкРНК

Стивен Зальцберг из Университета Джонса Хопкинса в своей статье, посвященной как раз проблеме подсчета человеческих генов, дает следующее определение: «Ген — любой участок хромосомной ДНК, который транскрибируется в функциональную молекулу РНК или сначала транскрибируется в РНК, а затем транслируется в функциональный белок». Это определение включает как гены некодирующих РНК, так и белок-кодирующие гены, но исключает псевдогены — нефункциональные остатки структурных генов, утратившие способность кодировать белок.

Публикация проекта «Геном человека» 2001 года оценила количество белок-кодирующих генов в 31 000, а группа под руководством Крейга Вентера (которая успешно соперничала с международным проектом), назвала «точное» число 26 588. В 2004 году, после завершения официального проекта предполагаемое число белок-кодирующих генов снизилось до 24 000. Каталог человеческих генов Ensembl (версия 34d) на тот момент включал 22 287 белок-кодирующих генов и 34 214 транскриптов. Скорее всего, мы не ошибемся, если скажем, что генов, кодирующих белки, у человека около 20 000 или чуть больше. Но что с генами РНК?

Роль нуклеотида в организме

В клетке нуклеотиды выполняют важные функции:

  • являются биорегуляторами;
  • используются как структурные блоки для нуклеиновых кислот ;
  • входят в состав главного источника энергии в клетке — АТФ;
  • участвуют во многочисленных обменных процессах в клетках;
  • являются переносчиками восстановительных эквивалентов в клетках (ФАД, НАДФ+; НАД+; ФМН);
  • могут рассматриваться как вестники регулярного внеклеточного синтеза (цГМФ, цАМФ).

Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.

Структура ДНК

синтезе двойной спирали ДНК

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Роль нуклеотидов в организме

Нуклеотиды в клетке выполняют ряд важнейших функций:

• используются в качестве структурных блоков для нуклеиновых кислот (нуклеотиды пуринового и пиримидинового рядов);• участвуют во многих обменных процессах в клетке;• входят в состав АТФ – главного источника энергии в клетках;• выступают в роли переносчиков восстановительных эквивалентов в клетках (НАД+, НАДФ+, ФАД, ФМН);• выполняют функцию биорегуляторов;• могут рассматриваться как вторые вестники внеклеточного регулярного синтеза (например, цАМФ или цГМФ).

Нуклеотид – это мономерная единица, образующая более сложные соединения – нуклеиновые кислоты, без которых невозможна передача генетической информации, ее хранение и воспроизведение. Свободные нуклеотиды являются главными компонентами, участвующими в сигнальных и энергетических процессах, поддерживающих нормальную жизнедеятельность клеток и организма в целом.

ДНК (дезоксирибонуклеиновая кислота)

ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.

ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.

Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.

Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.

Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.

Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.

Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.

Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.

В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.

Таким образом,

  • ТИМИН (Т) комплементарен АДЕНИНУ (А),
  • ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.

Репликация ДНК

Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.

Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.

После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.

После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.

Таким образом, сохраняется и передается новому поколению исходная структура ДНК.

Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.

Видеофильм «ДНК. Код Жизни»

Рубрики: Нуклеиновые кислоты

Использование в медицине

Открытие того из чего состоит молекула ДНК дало толчок к развитию множества новых услуг и направлений экспериментальной медицины. Благодаря новым технологиям, которые стали возможны вследствие исследования генома, сегодня почти любому доступны:

  1.      Диагностика заболеваний на сверхранней стадии. Анализ позволяет выявить инфекцию, даже если заболевание находится в инкубационном периоде, и нет ни каких симптомов.
  2.      Определение отцовства. Так же материнства и прочих родственных связей. При этом различные тесты можно проводить, как с участием потенциальных родителей, так и без них.
  3.      Тестирование на непереносимость пищевых продуктов. Какие вещества хорошо усваиваются организмом, какие плохо или не усваиваются вовсе, что вызывает аллергические реакции – всё это расскажут результаты индивидуального исследования.
  4.      Анализ этнической принадлежности – с какими народами перекрещивались далекие предки, и какие национальности формируют вас сегодня.
  5.      Исследование на наличие наследственных заболеваний, в том числе и спящих, которые передаются через поколение и более.

И это только самые востребованные тесты, имеющие коммерческий интерес и полезные для простого обывателя. Если говорить о перспективах лабораторных научных исследований, то многие учёные-генетики не без энтузиазма готовятся совершить самое великое открытие за всю человеческую историю — победить болезни и саму смерть.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector