Плазматическая мембрана

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Строение

Одномембранные органеллы могут быть самостоятельными структурами либо соединяться друг с другом. Они залегают в гиалоплазме и отделяются от нее также мембранами. Их строение может значительно отличаться, особенно по содержанию липидов и белков.

Мембрана

Мембраны имеют различную проницаемость, зависящую от основных функций, возложенных на органеллу. Так, они с различной скоростью пропускают ионы, глицерол, амино- и жирные кислоты, глюкозу. Процесс объясняется четырьмя происходящими явлениями:

  • диффузия;
  • осмос;
  • экзо- и эндоцитоз;
  • собственно транспортировка.

Экзо- и эндоцитоз происходят без затрат энергии, поэтому называются пассивными. Такое избирательное проникновение различных веществ связано с наличием специальных каналов, которые называются интегральными белками. Они расположены по всей мембране, оставляя функциональные ходы.

Химические элементы, такие, как K, Na, Cl, передвигаются посредством своих каналов. При их раздражении в клетку начинают мигрировать, например, ионы натрия. Однако такое явление не исключает появления дисбаланса в мембранном содержимом. В здоровых клетках нормальные концентрации быстро восстанавливаются.

Каналы для движения К при этом остаются все время открытыми. Однако движутся йоны калия не спеша.

Цитоплазма

Органоиды клетки не висят в невесомости. Они залегают в цитозоле. Он полностью заполняет клетку и имеет второе название — цитоплазма. Ее агрегатное состояние может представлять гель с определенной степенью вязкости или редкий золь.

Для цитоплазмы характерно сложное химическое строение, которое выражается соответствующим термином: биологический коллоид.

Удельный вес различных компонентов следующий:

  • соли (около 1%);
  • сахара (может содержаться от 4 до 6%);
  • белки и аминокислоты, из которых они образуются (характерно от 10 до 12%);
  • липидные и жировые клетки (2%);
  • ферменты АТФ;
  • вода (80%).

Примечание

Несмотря на то, что часть названных веществ растворимы в жидкости, они представляют собой коллоидный состав.

Рибосомы, лизосомы

К немембранным органоидам относятся рибосомы — структурные единицы, условно разделяемые на две части — большую и малую. В каждой части содержатся РНК и белки. Химики считают рибосому нуклеопритеидом. Клетка может содержать различное количество рибосом: от нескольких штук до миллиона.

Эукариотическая клетка может содержать два вида рибосом: расположенные свободно в цитогеле и прикрепленные к эндоплазматической сети. Синтезированные элементы с мембраны ядра попадают и располагаются именно в этих местах. Это цитоплазматические рибосомы. Однако существуют еще и рибосомы, расположенные в митохондриях и пластидах. Их отличие — в уменьшенном количестве рРНК и белков.

Ядро

Главным элементом клетки эукаритов является ядро. Его структура образована ядерной оболочкой, кариоплазмой, хроматином и ядрышками.

Оболочка аналогична клеточной. Ее предназначение — защищать генетическое содержимое клетки. Кроме этого, она контролирует перемещение веществ. В кариоплазме присутствуют белки, углеводы, органические и неорганические соединения, нуклеиновые кислоты. ДНК, РНК отдельных видов. Очень важный компонент — ядрышко. В нем заложено все необходимое для синтеза зародыша рибосом. В кариоплазме присутствуют ДНК, заключенные в хроматин. Со временем из хроматина образуются хромосомы.

Механическая функция плазмолеммы

Механические функции плазматической мембраны также неоднородны. Во-первых, плазмолемма поддерживает клеточную форму. Во-вторых, она ограничивает деформируемость клетки, однако не препятствует изменению формы и текучести. При этом укрепление мембраны также возможно. Это происходит за счет образования клеточной стенки протистами, бактериями, растениями и грибами. У животных, в том числе у человеческого вида, клеточная стенка наиболее простая и представлена лишь гликокаликсом.

У бактерий она гликопротеидная, у растений – целлюлозная, у грибов – хитиновая. Диатомовые водоросли и вовсе встраивают в свою клеточную стенку кремнезем (оксид кремния), что значительно увеличивает прочность и механическую стойкость клетки. Причем каждому организму клеточная стенка нужна именно для этого. А сама плазмолемма имеет намного меньшую прочность, чем слой протеогликанов, целлюлозы или хитина. В том, что цитолемма играет механическую роль, сомневаться не приходится.

Также механические функции плазматической мембраны позволяют митохондриям, хлоропластам, лизосомам, ядру и эндоплазматической сети функционировать внутри клетки и защищаться от подпороговых повреждений. Это характерно для любой клетки, имеющей данные мембранные органеллы. Более того, плазматическая мембрана имеет цитоплазматические выросты, посредством которых создаются межклеточные контакты. Это пример реализации механической функции плазматической мембраны. Защитная роль мембраны обеспечивается еще и за счет естественной резистентности и текучести липидного бислоя.

Межклеточные информационные взаимодействия

Клетка, воспринимая
и трансформируя различные сигналы,
реагирует на изменения окружающей её
среды. Плазматическая мембрана – место
приложения физических (например, кванты
света в фоторецепторах), химических
(например, вкусовые и обонятельные
молекулы, рН), механических (например,
давление или растяжение в механорецепторах)
раздражителей внешней среды и сигналов
информационного характера (например,
гормоны, нейромедиаторы) из внутренней
среды организма. При участии плазмолеммы
происходят узнавание и агрегация
(например, межклеточные контакты) как
соседних клеток, так и клеток с компонентами
внеклеточного вещества (например,
адгезионные контакты, адресная миграция
клеток и направленный рост аксонов в
нейроонтогенезе). Информационные
межклеточные взаимодействия укладываются
в схему, предусматривающую следующую
последовательность событий:

Сигнал → рецептор
→ (второй посредник) → ответ

Сигналы.
Передачу сигналов от клетки к клетке
осуществляют сигнальные молекулы
(первый посредник), вырабатываемые в
одних клетках и специфически воздействующие
на другие клетки – клетки-мишени.
Специфичность
воздействия сигнальных молекул определяют
присутствующие в клетках-мишенях
рецепторы,
связывающие
только собственные лиганды. Все сигнальные
молекулы (лиганды) – в зависимости от
их физико-химической природы –
подразделяют на полярные (точнее –
гидрофильные) и аполярные (точнее –
жирорастворимые).

Рецепторы
регистрируют
поступающий к клетке сигнал и передают
его вторым посредникам. Различают
мембранные и ядерные рецепторы.

Мембранные
рецепторы

гликопротеины. Они контролируют
проницаемость плазмолеммы путем
изменения конформации белков ионных
каналов (например, н-холинорецептор),
регулируют поступление молекул в клетку
(например, холестерина), связывают
молекулы внеклеточного вещества с
элементами цитоскелета (например,
интегрины), регистрируют присутствие
информационных сигналов (например,
нейромедиаторов, квантов света,
обонятельных молекул, антигенов,
цитокинов, гормонов пептидной природы).
Мембранные рецепторы регистрируют
поступающий к клетке сигнал и передают
его внутриклеточным химическим
соединениям, опосредующим конечный
эффект (вторые
посредники
).
Функционально мембранные рецепторы
подразделяют на каталитические, связанные
с ионными каналами и оперирующие через
G-белок.

Ядерные
рецепторы

белки-рецепторы стероидных гормонов
(минерально- и глюкокортикоиды, эстрогены,
прогестерон, тестостерон), ретиноидов,
тиреоидных гормонов, желчных кислот,
витамина D3,.
Каждый рецептор имеет область связывания
лаганда и участок, взаимодействующий
со специфическими последовательностями
ДНК. Другими словами, ядерные рецепторы
– активируемые лигандом транскриптиционные
факторы. В геноме человека имеется более
30 ядерных рецепторов, лиганды которых
находятся на стадии идентификации
(сиротские рецепторы).

Внерецепторные
низкомолекулярные сигналы.
Некоторые
низкомолекулярные сигналы (например,
оксид азота и монооксид углерода)
воздействуют на клетку-мишень, минуя
рецепторы.

Оксид азота (NO)
– газообразный
медиатор межклеточных взаимодействий,
образуется из L-аргинина
при участии фермента NO-синтазы.
В клетках-мишенях активирует
гуанилатциклазу, что приводит к увеличению
уровня второго посредника – цГМФ.

Монооксид углерода
(угарный газ, СО).
Как
сигнальная молекула СОиграет важную
роль в иммунной, сердечно-сосудистой
системах и периферической нервной
системе
.

Вторые посредники.
Внутриклеточныесигнальные
молекулы (вторые посредники) передают
информацию с мембранных рецепторов на
эффекторы (исполнительные молекулы),
опосредующие ответ клетки на сигнал.
Стимулы, такие как свет, запах, гормоны
и другие химические сигналы (лиганды),
инициируют ответ клетки-мишени, изменяя
в ней уровень внутриклеточных вторых
посредников. Вторые (внутриклеточные)
посредники представлены многочисленным
классом соединений. К ним относятся
циклические нуклеотиды (цАМФ и цГМФ),
инозитолтрифосфат, диацилглицерол,
Са2+.

Ответы
клеток-мишеней.

Функции клеток выполняются на разных
уровнях реализации генетической
информации (например, транскрипция,
посттрансляционная модификация) и
крайне разнообразны (например, изменения
режима функционирования, стимуляция
или подавление активности,
перепрограммирование синтезов и так
далее).

Что такое клеточная мембрана

Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .

Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.

Строение

Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.

В структуру плазмалеммы входят молекулы:

  • фосфолипидов;
  • гликолипидов;
  • холестерола;
  • белков.

Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.

Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.

Организация плазмалеммы:

  • мембрана состоит из липидов молекулы, которые имеют особое строение;
  • каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
  • липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
  • поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
  • в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
  • холестерол придает мембране упругость и жесткость;
  • благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.

Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.

Внутри и на поверхности цитолеммы встречаются следующие виды белков:

  1. Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
  2. Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
  3. Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.

Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.

Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.

Месторасположение в клетке

Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.

Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.

Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.

Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)

Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами

Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»

Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Одномембранные органоиды клетки — описание

Функционирование клетки обусловлено набором органелл, которые располагаются в ее гиалоплазме. Поскольку каждая из них имеет строго определенные функции, они различаются по строению, форме, наличию структурных элементов. Особенно важны те клетки, которые представляют одноклеточный организм. Существование органелл обуславливается элементом, ограничивающим внутреннее содержание клетки от внешней среды. Это — клеточная мембрана. Каждый органоид имеет свою оболочку, по особенностям которой определяют принадлежность к одно-, дву- и безмембранным вариантам.

К одномембранным органоидам относятся:

  • эндоплазматическая сеть (ЭПС);
  • комплекс (аппарат) Гольджи;
  • лизосомы;
  • вакуоли;
  • секреторные пузырьки и пероксисомы.

Каждая из этих структур несет свою функциональную нагрузку, имеет особенности строения. Их объединяет закономерность строения мембраны.

Эволюционная теория происхождения этих элементов заключается в отграничении части клеточного содержания путем впячивания клеточной мембраны. После того, как впячиваемая часть замкнулась, произошло ее отпочкование. При этом осталась нерушимой взаимосвязь между образовавшимися пузырьками, благодаря которой они «обмениваются» своим содержимым. Существует общее название для такой системы — вакуолярная. В то же время каждый элемент имеет свое название.

Примечание

Оболочка главного клеточного элемента — ядра — с учетом механизма образования также является звеном системы вакуолей — цистерной ЭПС. Однако она имеет две мембраны. На наружной можно при цитологических исследованиях обнаружить рибосомы (сходство с ЭПС), на внутренней — элементы, взаимодействующие с ДНК-аппаратом.

В справочной литературе можно встретить утверждение, что одномембранными структурами являются органы движения клеток — жгутики и реснички.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector