Клеточная стенка

Функции клеточной стенки

Основные функции клеточной стенки заключаются в том, чтобы сформировать каркас для клетки и предотвратить ее расширение. Целлюлозное волокно, структурные белки и другие полисахариды придают клеткам форму и обеспечивают поддержку. К дополнительным функциям клеточной стенки относятся:

  • Поддержка — обеспечение механической прочности и структуры, а также контроль направления роста клеток.
  • Выдерживает тургорное давление — сила воздействия содержимого клетки (протопласта) на ее стенки. Это давление помогает растению оставаться жестким и прямостоящим, но может также вызвать разрушение клетки.
  • Регулировка роста — посылает сигналы клеткам для входа в клеточный цикл, чтобы делится и расти.
  • Регулировка диффузии — пористая структура клеточной стенки позволяет некоторым необходимым веществам, включая белки, попадать внутрь клетки, препятствуя проникновению других.
  • Связь — клетки взаимодействуют между собой через плазмодесмы (поры или каналы между стенками растительных клеток, которые позволяют молекулам и сигналам связи проходить между отдельными клетками растения).
  • Защита — осуществляет защиту клеток от вирусов и остальных опасных веществ или микроорганизмов, а также помогает предотвратить потерю воды.
  • Хранение — хранит углеводы, которые используются для роста растений, особенно в семенах.

Цитоплазма

Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено.

Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами», и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.

Плазматическая мембрана.

Плазматическая мембрана окружает клетки всех живых организмов. В световой микроскоп она не видна, т. к. ее толщина составляет всего около 7 нм. С помощью электронного микроскопа установлено, что плазматическая мембрана состоит из фосфолипидного бислоя, окруженного белками. Часть белков погружена в фосфолипидный бислой и пронизывает его насквозь. Эти белки участвуют в избирательном транспорте различных соединений (сахаров, аминокислот, солей) в клетку и в удалении из клетки продуктов обмена. Расположенные на поверхности мембраны рецепторы гормонов и нейромедиаторов участвуют в гуморальной и нервной регуляции клеточной активности у многоклеточных организмов.

Плазматическая мембрана полупроницаема, то есть способна пропускать в клетку воду и некоторые низкомолекулярные соединения, и не пропускать макромолекулы и многие другие вещества. Это свойство обеспечивает барьерную функцию плазматической мембраны: отделение внутриклеточного содержимого от внешней среды и поддержание постоянства состава цитоплазмы. Плазматическая мембрана участвует в процессах фагоцитоза (поглощение твердых частиц) и пиноцитоза (поглощение капель жидкостей). При этом участок мембраны впячивается внутрь клетки и отшнуровывается от нее, образуя пищеварительную вакуоль. Фагоцитоз и пиноцитоз являются основой питания у многих одноклеточных организмов. У высших организмов с помощью фагоцитоза осуществляются защитные функции. Лейкоциты и некоторые клетки костного мозга, лимфатических узлов, селезенки с помощью фагоцитоза поглощают бактерий, вирусные частицы и другие чужеродные вещества. С помощью обратного фагоцитоза и пиноцитоза осуществляется секреция из клетки различных веществ. Большинство клеток растений, грибов и бактерий помимо плазматической мембраны имеют клеточную стенку. Это прочное образование, построенное из целлюлозы и лигнина (у растений), хитина (у грибов и некоторых водорослей) или из сложного комплекса белков и полисахаридов (у бактерий). Клеточная стенка препятствует фагоцитозу и пиноцитозу, поэтому питание большинства растений и грибов основывается на явлении осмоса. У некоторых животных, например, у членистоногих, прочный хитиновый покров имеют только клетки наружного эпителия, формирующие наружный скелет этих животных. У большого числа одноклеточных организмов плазматическая мембрана участвует в образовании кутикулы — прочной белковой оболочки клеток. Однако большинство животных клеток лишено клеточной стенки, поэтому эти клетки могут легко изменять форму и двигаться за счет ложноножек (амебоидное движение). У ряда животных клеток снаружи от плазматической мембраны образуется гликокаликс — эластичное образование, состоящее из гликопротеинов и углеводов. Как и клеточная стенка, он защищает плазматическую мембрану от механических повреждений, а также участвует во взаимодействии клеток между собой.

Сравнительная характеристика клеток эукариот и прокариот

Вы можете увидеть сравнение по признакам прокариот и эукариот в таблице.

Признак Прокариоты Эукариоты
Размеры клеток Средний диаметр 0,5 —10 мкм Средний диаметр 10 — 100 мкм
Организация генетического материала
Форма, количество и расположение молекул ДНК Обычно имеется одна кольцевая молекула ДНК, размещенная в цитоплазме Обычно есть несколько линейных молекул ДНК — хромосом, локализованных в ядре. В интерфазном ядре (вне деления) хромосомы представляют собой хроматин: ДНК компактизируется в комплексе с белками
Деление
Тип деления Простое бинарное деление. Веретено деления не образуется Мейоз или митоз
Органеллы
Наличие мембранных органелл Окруженные мембранами органеллы отсутствуют, иногда плазмалемма образует выпячивание внутрь клетки Имеется большое количество одномембранных и двумембранных органелл

Основные компоненты прокариотической клетки

Основными компонентами прокариотической клетки являются:

  • Клеточная стенка, которая окружает клетку извне, защищает её, придаёт устойчивую форму, предотвращающую от осмотического разрушения. У бактерий клеточная стенка состоит из муреина, построенного из длинных полисахаридных цепей, соединенных между собой короткими пептидными перемычками. Клеточная стенка архей не содержит муреина, а построена в основном из разнообразных белков и полисахаридов.
  • Жгутики — органеллы движения некоторых бактерий. Бактериальный жгутик построен значительно проще эукариотического, и он в 10 раз тоньше, внешне не покрыт плазматической мембраной и состоит из одинаковых молекул белков, которые образуют цилиндр. В мембране жгутик закреплен при помощи базального тела.
  • Плазматическая и внутренние мембраны. Общий принцип устройства клеточных мембран не отличается от эукариот, однако химическом составе мембраны есть немало различий, в частности, в мембранах прокариот отсутствуют молекулы холестерина и некоторых липидов, присущих мембранам эукариот. Большинство прокариотических клеток (в отличие от эукариотических) не имеют внутренних мембран, которые разделяют цитоплазму на отделы (компартменты). Только у некоторых фотосинтетических и аэробных бактерий плазмалемма образует вгибание внутрь клетки, что выполняет соответствующие метаболические функции.
  • Нуклеоид — не ограниченный мембранами участок цитоплазмы, в котором расположена кольцевая молекула ДНК — «бактериальная хромосома», где хранится весь генетический материал клетки.
  • Плазмиды — небольшие дополнительные кольцевые молекулы ДНК, несущие обычно всего несколько генов. Плазмиды, в отличие от бактериальной хромосомы, не являются обязательным компонентом клетки. Обычно они придают бактерии определенные полезные для неё свойства, такие как устойчивость к антибиотикам, способность усваивать из среды определенные энергетические субстраты, способность инициировать половой процесс и тд.
  • Рибосомы прокариот, как и у всех других живых организмов, отвечают за осуществление процесса трансляции (одного из этапов биосинтеза белка). Однако бактериальные рибосомы несколько меньше, чем эукариотические и имеют другой состав белков и РНК. Из-за этого бактерии, в отличие от эукариот, чувствительны к таким антибиотикам, как эритромицин и тетрациклин, которые избирательно действуют на прокариотические рибосомы.
  • Споры (эндоспоры) — окруженные плотной оболочкой структуры, содержащие ДНК бактерии и обеспечивающее выживание в неблагоприятных условиях. К образованию спор способны лишь некоторые виды прокариот, например в частности возбудитель столбняка, возбудитель ботулизма и возбудитель сибирской язвы. Для образования эндоспоры клетка реплицирует свою ДНК и окружает копию плотной оболочкой, из созданной структуры удаляется избыток воды, и в ней замедляется метаболизм. Споры бактерий могут выдерживать довольно жесткие условия среды, такие как длительное высушивание, кипячение, коротковолновое облучение.

Минерализация клеточных оболочек

В более поздней стадии развития оболочки содержат минеральные вещества, причём в некоторых случаях в весьма значительных количествах. Эти вещества могут отлагаться и в толще оболочки и на её внутренней и наружной поверхности, или же в особых выростах клеточных стенок. По структуре эти отложения могут быть аморфными и кристаллическими.

Наиболее распространены отложения кремнезёма и солей извести. Богаты кремнезёмом клетки кожицы стеблей и листьев хвощей, злаков, осок. Окремнение стенок свойственно и многим растениям из двудольных, особенно из семейства мареновых. Окремнению подвергаются жгучие волоски у крапивы двудольной.

Кальций встречается в клеточных оболочках в виде углекислой, щавелевокислой и пектиновокислой извести.

Широко распространено наличие кальция в срединной пластинке клеточных стенок.

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы,
  • мышечная мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани,
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль,
  • нервная образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Соединительная ткань

Поры

Внутренне утолщение клеточной стенки не бывает вполне равномерным. Сформировавшаяся оболочка имеет более толстые и менее утолщенные участки. Даже в тех случаях, когда стенки, в общем, имеют равномерную толщину, в них, при детальном рассмотрении обнаруживаются небольшие углубления. Эти места, в которых оболочка очень тонка, и называются порами.

Таким образом, поры у растений — это не сквозные многочисленные отверстия, как это понимается в общеупотребительном смысле. У растений порой называют любое неутолщенное место оболочки.

Для обозначения сквозных отверстий у растений используется другое название — перфорации.

Поры в 2-х сосединх клетках располагаются одна против другой, образуя так называемую пару пор.

У клеток с мощной вторичной оболочкой поры в разрезе имеют вид радиальных каналов. На поперечном срезе эти каналы могут иметь разную форму: чаще округлую, реже щелевидную (эллиптическую или крестообразную). Округлые поры обычно формируются в паренхимных клетках, щелевидные — в прозенхимных. По форме порового канала обычно различают поры 2-х типов: простые и окаймлённые.

Простые поры имеют достаточно ровный канал, с одинаковым диаметром на всём протяжении.

У окаймлённых пор голосеменных растений на первичной оболочке образуется линзовидное утолщение — торус, а выросты вторичных оболочек как бы нависают над торусом.

Окаймлённые поры характерны для водопроводящих элементов древесины. Эти элементы имеют вид длинных труб разного диаметра. По этим трубкам, как по капиллярам, поднимается вода. Понятно, что давление воды в смежных клетках неодинаково. В этом случае торус смещается и прижимается к выступам вторичной оболочки клеток с меньшим давлением.

Обычно к порам приурочены и плазмодесменные канальцы. Нередко через одну пору проходят десятки плазмодесм.

В любом случае, поры, как и плазмодесмы, облегчают диффузию веществ, растворённых в воде, из одной клетки в другую.

Сквозные отверстия клеточных стенок — перфорации особенно характерны для водопроводящих поперечных перегородок водопроводящих члеников сосудов. Как правило, в этих перегородках образуются одна, две или несколько крупных перфораций.

Многочисленные мелкие перфорации имеются в так называемых ситовидных трубках, по этим трубкам также передвигается вода с органическими веществами, но сверху вниз, от листьев к корням.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

Ультраструктура хлоропласта: 1. наружная мембрана 2. межмембранное пространство 3. внутренняя мембрана (1+2+3: оболочка) 4. строма (жидкость) 5. тилакоид с просветом (люменом) внутри 6. мембрана тилакоида 7. грана (стопка тилакоидов) 8. тилакоид (ламела) 9. зерно крахмала 10. рибосома 11. пластидная ДНК 12. пластоглобула (капля жира)

Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Ферментативная — мембранные белки нередко являются ферментами

Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн»

Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Строение клеток

Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

  • прокариоты (доядерные) — более простые по строению и возникли в процессе эволюции раньше;
  • эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, в основном, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Содержимое клетки отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариоты (от лат. Pro — перед, до и греч. Κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.

Эукариоты (эвкариоты) (от греч. Ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Строение прокариотической клетки

Рисунок 1. Прокариотическая клетка бактерий

Клетки двух основных групп прокариот — бактерий и архей — похожи по структуре: характерными их признаками являются отсутствие ядра и мембранных органелл.

Центриоли

Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет, за исключением низших водорослей). Центриоль представляет собой цилиндр, боковая поверхность которого образована микротрубочками.

Вокруг центриолей находится так называемый центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

Рисунок 8. Центриоли.

Перед делением клетка содержит две центриоли, расположенные под прямым углом друг к другу. В ходе митоза они расходятся к разным концам клетки, формируя полюса веретена деления. После цитокинеза каждая дочерняя клетка получает по одной центриоли, которая удваивается к следующему делению. Удвоение центриолей происходит не делением, а путём синтеза новой структуры, перпендикулярной существующей.

Формирование и рост клеточных оболочек

Даже молодые меристематические клетки снабжены первичной оболочкой. Новая оболочка формируется в процессе деления клетки в заключительной стадии митоза — телофазе. Заключительная в телофазе стадия — процесс деления цитоплазмы на дочерние клетки называется цитокинезом.

В ранней телофазе между двумя дочерними ядрами формируется бочкообразная система волокон, называемая фрагмопластом. Волокна фрагмопласта, так же как и волокна митотического веретена состоят из микротрубочек. В световом микроскопе видно, как в экваториальной плоскости фрагмопласта появляются мелкие капли, которые затем сливаются, образуя клеточную пластинку. Клеточная пластинка растёт центробежно до тех пор, пока не достигнет оболочки делящейся клетки. С помощью электронного микроскопа было установлено, что сливающиеся капельки — это пузырьки, отрывающиеся от аппарата Гольджи. Они в основном содержат пектиновые вещества, из которых формируется срединная пластинка, а мембраны пузырьков участвуют в построении плазматической мембраны по обеим сторонам пластинки. В это время из фрагментов трубчатого эндоплазматического ретикулума образуются плазмодесмы.

После образования срединной пластинки протопласт дочерних клеток откладывает на нее первичную оболочку.

Слой целлюлозы, который откладывается во время роста клетки, называется первичной клеточной оболочкой. Помимо целлюлозы, гемицеллюлоз и пектина первичные оболочки содержат и структурный белок — гликопротеин. Первичные оболочки могут и лигнифицироваться, хотя, как правило, лигнин им не свойственен. Однако наиболее характерную часть первичной оболочки составляет пектиновый компонент. Он придаёт оболочке пластичность, позволяет ей растягиваться, по мере удлинения органов: корня, стебля, листа.

Пектиновые вещества способны сильно набухать, поэтому первичные оболочки содержат много воды (60-90%).

В целом, на долю гемицеллюлоз и пектиновых веществ, приходится 50-60 % сухого веса первичной оболочки, содержание целлюлозы не превышает 30 %, структурный белок занимает до 10%, лигнин, как правило, отсутствует.

Вторичное утолщение оболочек обычно начинается после прекращения роста клеток. При этом толщина оболочки увеличивается, а объём, запасаемый полостью клетки, сокращается.

Во многих случаях по завершении вторичного утолщения протопласты клеток отмирают, но клетки продолжают функционировать, выполняя главным образом механическую и опорную функцию.

В соответствие с механической функцией строение и химический состав вторичной оболочки сильно отличается от первичной. В ней значительно меньше воды и преобладают плотно сомкнутые микрофибриллы целлюлозы (40-50 %), в первичной оболочке — они расположены рыхло. Много во вторичных оболочках и лигнина — 25-30%, он придаёт оболочкам дополнительную жёсткость и прочность; гемицеллюлозы составлют 20-30% и практически нет пектиновых веществ.

Итак: лицо первичной оболочки составляют пектиновые вещества, в то время как вторичной — лигнин.

Вторичная оболочка далеко не всегда откладывается равномерно. У некоторых специализированных водопроводящих клеток она имеет вид колец или спиральных лент. Такие клетки сохраняют способность к продольному растяжению и после отмирания.

Особенности клеточной оболочки растений

Данная структура у растительных организмов состоит в основном из полимера, относящегося к классу полисахаридов – целлюлозы. Её молекулярная формула такая же, как и у растительного крахмала (C6H10O5)n. Макромолекулы этого полисахарида содержат остатки бета-глюкозы и имеют только линейное строение, поэтому они могут образовывать волокна, собранные в пучки. Они формируют прочный каркас клеточной стенки, углублённый в коллоидный матрикс, который также состоит в основном из углеводов – пектина и гемицеллюлозы. Также целлюлоза часто встречается и в других частях растений, например, волокна хлопка на 99% состоят из чистой целлюлозы, лён и конопля содержат её в количестве 75-80%, в древесине — до 55%. Как было уже сказано ранее, функции клеточной оболочки обусловлены тем, в ткани каких организмов она входит.

Кроме целлюлозы стенка содержит белки, липиды и неорганические вещества. Например, в состав клеточных оболочек высших споровых растений – хвощей – входит диоксид кремния, поэтому само растение очень жёсткое и прочное и является несъедобным для животных. Один из слоёв, образующих стебель многолетних растений и называемый пробкой, накапливает в оболочках жироподобное вещество – суберин. Вследствие этого цитоплазма и её органоиды разрушаются, а сами клетки могут выполнять только опорную функцию (опробковевание стебля).

Если между волокнами целлюлозы накапливается лигнин, он вместе с гемицеллюлозой усиливает механическую прочность стеблей и стволов древесных пород растений, а пигменты, содержащиеся в лигнине, обуславливают окраску древесины. Стенка также содержит поры, выстланные мембраной, которые обеспечивают транспорт веществ.

Ядро

Клеточное ядро содержит молекулы ДНК, на которых записана генетическая информация организма. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего они выходят в цитоплазму.

Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Оболочка ядра двумембранная, сливается с шероховатым ЭПР. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

Рисунок 6. Ядро клетки.

История изучения

Впервые понятие «мембрана» появилось в 1855 году. Оно переводится как «пленка». Было использовано ботаником фон Молем и фон Негели для объяснения плазмолиза. Он первый заметил, что клетки могут изменять объем под давлением окружающей среды.

В 1877 году ботаник Пфеффер заявил о том, что клетки имеют оболочку. В 1890 году немец Оствальд высказал теорию о том, что клеточная мембрана – это участник биоэлектрических процессов.

Ученый Овертон в конце IX – начале XX века предположил, что в основе мембраны лежат молекулы жиров. В 1925 году ученые Грендель и Гортер высказали предположение, что мембрана состоит из двойного липидного слоя.

В 1935 году американцы Дэниэль и Доусон объяснили поверхностное натяжение клеточной оболочки содержанием в ней белков. Они предположили, что мембрана выглядит как два слоя липидов, покрытых протеином, с пустотой между ними.

В 1950 году после появления электронного микроскопа удалось подтвердить их теорию. Через десять лет американский ученый Робертсон написал работу о строении мембраны, в которой говорилось, что оболочка состоит из трех слоев. на протяжении длительного времени она считалась непогрешимой, но потом появились сомнения. Ведь при такой толщине оболочки веществам сложно было бы попадать внутрь клетки.

В 1972 году Сингер и Николсон доказали, что клеточная мембрана обладает жидкостно-мозаичной структурой, т. е. она частично заполнена жидкостью, а молекулы в ней движутся хаотично. Мембранные белки имеют разное строение, форму и назначение, по-разному расположены на липидных слоях.

В 1997 году немецкий биолог Зимонс, что некоторые белки не прикреплены к поверхности мембраны, а свободно перемещаются в билипидном слое.

Цитоплазма как составная часть бактериальной клетки. Органеллы клетки.

Цитоплазма занимает
центральную часть клетки. Это жидкая
коллоидная система, на 75-80% состоящая
из воды. Остальное приходится на долю
белков, жиров, углеводов. Цитоплазма
неоднородна. В ней имеются гранулы или
включения 2-х типов:

1 тип
гранул обязателен для клетки, т.к.
выполняет постоянную функцию и их потеря
приводит клетку к гибели, такие гранулы
называются органоидами или органеллами.

2 тип
гранул необязателен для клетки, не
выполняет постоянной функции и их утрата
не приводит клетку к гибели. Такие
гранулы называются запасными питательными
веществами. К ним относятся капельки
жира, зерна крахмала, гликогена, волютина,
кристаллики минеральных веществ (серы,
железа, кальция). Они накапливаются в
благоприятных условиях жизни и расходуются
по мере голодания клетки.

Важнейшее значение
в клетке имеют органоиды. К ним относят:

  1. Рибосомы –
    шарообразные тельца, состоящие из белка
    и РНК, в которых происходит биосинтез
    белка клетки (фабрики белка).

  2. Мезосомы –
    представляет собой вспячивание
    внутренней цитоплазмы цитоплазматической
    мембраны. На мезасоме находятся
    окислительно-восстановительные
    ферменты, принимающие участие в дыхании
    клетки. Основная функция мезасом –
    энергетическая. Назвают мезосомы
    силовыми станциями клетки. Кроме того,
    мезосомы участвуют в формировании
    клеточной перетяжки при делении клетки.

  3. Вакуоли (появляются
    с возрастом) – полости, заполненные
    клеточным соком. Они поддерживают
    осмотическое давление клетки, а также
    обезвреживают клетку от ядовитых
    продуктов жизнедеятельности.

  4. Хроматофоры –
    гранулы, содержащие в себе красящие
    вещества или пигменты, присущи только
    окрашенным формам бактерий. У бесцветных
    форм их нет.

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector