Биосинтез белка в клетке

Механизм транскрипции

Ключевым ферментом транскрипции является РНК-полимераза. Последняя бывает нескольких видов и отличается по строению у прокариот и эукариот. Однако механизм ее действия везде одинаков и заключается в наращивании цепи комплементарно подбираемых рибонуклеотидов с замыканием фосфодиэфирной связи между ними.

Матричной молекулой для этого процесса служит ДНК. На ее основе могут создаваться разные типы РНК, а не только информационные, которые используются в белковом синтезе.

Участок матрицы, с которого «списывается» последовательность РНК, называется транскриптоном. В его составе имеется промотор (место для присоединения РНК-полимеразы) и терминатор, на котором синтез останавливается.

Обратная транскрипция

Долгое время считалось, что матричное копирование генетической информации может идти только в одном направлении: ДНК → РНК → белок. Эта схема получила название центральной догмы молекулярной биологии. Однако в ходе исследований было установлено, что в ряде случаев возможно копирование с РНК на ДНК – так называемая обратная транскрипция.

Способность переносить генетический материал с РНК на ДНК свойственна ретровирусам. Характерным представителем таких РНК-содержащих вирусов является вирус иммунодефицита человека. Встраивание вирусного генома в ДНК зараженной клетки происходит с участием особого фермента – обратной транскриптазы (ревертазы), выступающей как катализатор биосинтеза ДНК на матрице РНК. Ревертаза также входит в состав вирусной частицы. Новообразованная молекула интегрируется в клеточную ДНК, где служит для производства новых вирусных частиц.

Этапы синтеза

Все процессы матричного синтеза поделены на три этапа:

  • инициация (начало);
  • элонгация;
  • терминация (окончание).

Инициация представляет собой подготовку к синтезу, характер которой зависит от вида процесса. Главной целью этой стадии является приведение системы фермент-субстрат в рабочее состояние.

Во время элонгации непосредственно осуществляется наращивание синтезируемой цепи, при котором между подобранными согласно матричной последовательности звеньями замыкается ковалентная связь (пептидная или фосфодиэфирная). Терминация приводит к остановке синтеза и освобождению продукта.

Какие молекулы синтезируются на основе матрицы

К реакциям матричного синтеза относят:

  • репликацию — удвоение генетического материала;
  • транскрипцию — синтез рибонуклеиновых кислот;
  • трансляцию — производство белковых молекул.

Репликация представляет собой превращение одной молекулы ДНК в две идентичные друг другу, что имеет огромное значение для жизненного цикла клеток (митоз, мейоз, удвоение плазмид, деление бактериальных клеток и т. д.). Очень многие процессы основаны на «размножении» генетического материала, а матричный синтез позволяет воссоздать точную копию любой молекулы ДНК.

Транскрипция и трансляция представляют собой две стадии реализации генома. При этом наследственная информация, записанная в ДНК, преобразуется в определенный белковый набор, от которого зависит фенотип организма. Данный механизм именуется путем «ДНК-РНК-белок» и составляет одну из центральных догм молекулярной биологии.

Реализация этого принципа достигается при помощи матричного синтеза, который сопрягает процесс образования новой молекулы с «исходным образцом». Основой такого сопряжения является фундаментальный принцип комплементарности.

Участие ДНК в биосинтезе белка

ДНК способна образовывать устойчивую структуру, ключевым элементом которой является комплементарное соединение азотистых оснований. Двойная цепь ДНК обеспечивает, во-первых, полное воспроизведение молекулы, а во-вторых – считывание отдельных участков ДНК при белковом синтезе. Этот процесс называется транскрипцией.

В ходе транскрипции участок ДНК, содержащий определенный ген, расплетается, и на одной из цепочек – матричной – синтезируется молекула РНК в качестве копии второй цепочки, называемой кодирующей. Этот синтез также базируется на свойстве оснований образовывать комплементарные пары. В синтезе принимают участие некодирующие, служебные области ДНК и фермент РНК-полимераза. РНК уже служит матрицей для синтеза белка, и в дальнейшем процессе ДНК не участвует.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Обмен веществ

Обмен веществ — важнейшее свойство живых организмов. Совокупность реакций обмена веществ, протекающих в организме, называется метаболизмом. Метаболизм состоит из реакций ассимиляции (пластического обмена, анаболизма) и реакций диссимиляции (энергетического обмена, катаболизма). Ассимиляция — совокупность реакций биосинтеза, протекающих в клетке, диссимиляция — совокупность реакций распада и окисления высокомолекулярных веществ, идущих с выделением энергии. Эти группы реакций взаимосвязаны: реакции биосинтеза невозможны без энергии, которая выделяется в реакциях энергетического обмена, реакции диссимиляции не идут без ферментов, образующихся в реакциях пластического обмена.

По типу обмена веществ организмы подразделяются на две группы: автотрофы и гетеротрофы. Автотрофы — организмы, способные синтезировать органические вещества из неорганических и использующие для этого синтеза или солнечную энергию, или энергию, выделяющуюся при окислении неорганических веществ. Гетеротрофы — организмы, использующие для своей жизнедеятельности органические вещества, синтезированные другими организмами. В качестве источника углерода автотрофы используют неорганические вещества (СО2), а гетеротрофы — экзогенные органические. Источники энергии: у автотрофов — энергия солнечного света (фотоавтотрофы) или энергия, выделяющаяся при окислении неорганических соединений (хемоавтотрофы), у гетеротрофов — энергия окисления органических веществ (хемогетеротрофы).

Большинство живых организмов относится или к фотоавтотрофам (растения), или к хемогетеротрофам (грибы, животные). Если организмы, в зависимости от условий, ведут себя как авто- либо как гетеротрофы, то их называют миксотрофами (эвглена зеленая).

А-ДНК – сухая молекула

А-форма – это правый винт с 11 комплементарными парами оснований в каждом витке. Диаметр его составляет 2,3 нм, а длина одного витка спирали – 2,5 нм. Плоскости, образуемые спаренными основаниями, имеют наклон 20° по отношению к оси молекулы. Соседние нуклеотиды расположены в цепочках компактно – между ними всего 0,23 нм.

Такая форма ДНК возникает при низкой гидратации и при повышенной ионной концентрации натрия и калия. Она характерна для процессов, в которых ДНК образует комплекс с РНК, поскольку последняя не способна принимать иные формы. Кроме того, А-форма весьма устойчива к ультрафиолетовому облучению. В этой конфигурации дезоксирибонуклеиновая кислота содержится в грибных спорах.

Влажная B-ДНК

При малом содержании солей и высокой степени гидратации, то есть в нормальных физиологических условиях, ДНК принимает свою главную форму B. Природные молекулы существуют, как правило, в В-форме. Именно она лежит в основе классической модели Уотсона-Крика и чаще всего изображается на иллюстрациях.

Данной форме (она также правозакрученная) свойственна меньшая компактность размещения нуклеотидов (0,33 нм) и большой шаг винта (3,3 нм). Один виток содержит 10,5 пары оснований, поворот каждой из них относительно предыдущей составляет около 36°. Плоскости пар почти перпендикулярны оси «двойной спирали». Диаметр такой сдвоенной цепочки меньше, чем у А-формы – он достигает только 2 нм.

Трансляция

Для построения нового белка в клетке должен быть набор необходимых аминокислот, которые вырабатываются в организме, или получаются при переваривании поступающей извне пищи. Это говорит о том, что для полноценной деятельности организма питание должно быть полным и сбалансированным, с достаточным количеством белка. Аминокислоты, в основном, поступают после расщепления пищевого белка.

Поступающие аминокислоты переносятся специальными транспортными РНК, которые реагируют на информацию в виде кодона, единицы генетического кода. На аминокислоте должен быть соответствующий тринуклелеотид — антикодон. На рибосоме закрепится только та аминокислота, код которой подходит. На каждый элемент цепочки уходит 0,2 с. Именно на такое время останавливается рибосома, движущаяся по цепочке иРНК.

Между аминокислотами, поступающими на рибосому на каждом последующем участке, формируются пептидные связи. Они возникают благодаря наличию в начале участка одной аминокислоты аминогруппы, а на соответствующем конце соседней — карбоксильной группы. Связь возникает прочная и неразрывная.

Белковая цепочка заканчивает формирование после контакта рибосомы к определенным маркером, обозначающим конец этого этапа синтеза. Цепочка аминокислот отрывается от иРНК и передвигается в цитоплазму, для формирования вторичных и третичных структур. Процесс синтеза происходит непрерывно, после перехода рибосомы на следующую позицию на ее место тут же заступает другая и копирует цепочку с иРНК. Выполнившая свою задачу рибосома переходит на другую РНК и формирует другой белок.

Основные аспекты синтеза молекул на основе матрицы

Информация о структуре синтезируемой молекулы содержится в последовательности звеньев самой матрицы, к каждому из которых подбирается соответствующий элемент «дочерней» цепи. Если химическая природа синтезируемой и матричной молекул совпадают (ДНК-ДНК или ДНК-РНК), то сопряжение происходит напрямую, так как каждый нуклеотид имеет пару, с которой может связаться.

Для синтеза белка требуется посредник, одна часть которого взаимодействует с матрицей по механизму нуклеотидного соответствия, а другая присоединяет белковые звенья. Таким образом, принцип комплементарности нуклеотидов работает и в этом случае, хоть и не связывает напрямую звенья матричной и синтезируемой цепей.

Некоторые свойства генетического кода

Генетический код практически универсален – за очень малым количеством исключений он одинаков у всех организмов, от бактерий до человека. Это свидетельствует, во-первых, о родстве всех форм жизни на Земле, а во-вторых, о древности самого кода. Вероятно, на ранних этапах существования примитивной жизни достаточно быстро сформировались разные варианты кода, но эволюционное преимущество получил только один.

Кроме того, он специфичен (однозначен): разные аминокислоты не кодируются одним и тем же триплетом. Также для генетического кода характерна вырожденность, или избыточность – несколько кодонов могут соответствовать одной и той же аминокислоте.

Считывание генетической записи осуществляется непрерывно; функции знаков препинания выполняют также триплеты оснований. Как правило, в генетическом «тексте» не бывает перекрывающихся записей, однако здесь тоже не обходится без исключений.

Окончательная компактизация ДНК

В ядре форма макромолекулы дезоксирибонуклеиновой кислоты становится чрезвычайно сложной, компактизируясь в несколько этапов.

  1. Во-первых, нить сворачивается в особую структуру типа соленоида – хроматиновую фибриллу толщиной в 30 нм. На этом уровне ДНК, сворачиваясь, сокращает свою длину в 6-10 раз.
  2. Далее фибрилла при помощи специфических скэффолд-белков образует зигзагообразные петли, что уменьшает линейный размер ДНК уже в 20-30 раз.
  3. На следующем уровне формируются плотно упакованные петельные домены, чаще всего имеющие форму, условно названную «ламповая щетка». Они прикрепляются к внутриядерному белковому матриксу. Толщина таких структур составляет уже 700 нм, ДНК при этом укорачивается приблизительно в 200 раз.
  4. Последний уровень морфологической организации – хромосомный. Петельные домены уплотняются настолько, что достигается общее укорочение в 10 000 раз. Если длина растянутой молекулы – около 5 см, то после упаковки в хромосомы она уменьшается до 5 мкм.

Высшего уровня усложнения формы ДНК достигает в состоянии метафазы митоза. Именно тогда она приобретает характерный облик – две хроматиды, соединенные перетяжкой-центромерой, которая обеспечивает расхождение хроматид в процессе деления. Интерфазная ДНК организована до доменного уровня и распределяется в ядре клетки без особого порядка. Таким образом, мы видим, что морфология ДНК тесно связана с различными фазами ее существования и отражает особенности функционирования этой важнейшей для жизни молекулы.

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

А-ДНК – сухая молекула

А-форма – это правый винт с 11 комплементарными парами оснований в каждом витке. Диаметр его составляет 2,3 нм, а длина одного витка спирали – 2,5 нм. Плоскости, образуемые спаренными основаниями, имеют наклон 20° по отношению к оси молекулы. Соседние нуклеотиды расположены в цепочках компактно – между ними всего 0,23 нм.

Такая форма ДНК возникает при низкой гидратации и при повышенной ионной концентрации натрия и калия. Она характерна для процессов, в которых ДНК образует комплекс с РНК, поскольку последняя не способна принимать иные формы. Кроме того, А-форма весьма устойчива к ультрафиолетовому облучению. В этой конфигурации дезоксирибонуклеиновая кислота содержится в грибных спорах.

Нуклеиновые кислоты – полимерные молекулы

Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:

  • пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
  • фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
  • азотистого основания.

Строение нуклеотида

Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua). Каждое из них содержится как в ДНК, так и в РНК. Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).

Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.

Строение пурина и пуриновых азотистых основанийСтроение пиримидина и пиримидиновых азотистых оснований

Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.

В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:

  • 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
  • 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).

Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.

Дезоксирибонуклеиновая кислота: коротко о главном

ДНК — как карта памяти, в ней вся информация, необходимая для развития любого организма. Как именно проявится эта информация, во многом зависит от того, как работают другие нуклеиновые кислоты — РНК. Но про них расскажем в другой раз.

Структура ДНК известна всем: знаменитую двойную спираль постоянно показывают в фантастических фильмах про мутантов и используют в качестве иллюстрации к научпоп-статьям.

Каждая спираль состоит из нуклеозидов, их может быть четыре типа:

  • Аденозин (А)
  • Тимидин (Т)
  • Гуанозин (Г)
  • Цитидин (Ц)

Это те буквы, которыми написан текст жизни. Каждое слово в нем — отдельный ген. Каждый в какой-то степени определяет наше здоровье, способности, внешний вид — практически все.

Чтобы жизнь на Земле продолжалась, клетки (а вместе с ними и ДНК) должны делиться. Необходимость в делении клеток возникает также при росте организма и обновлении тканей. При этом ДНК клетки сначала удваивается, а затем распределяется по новым клеткам.

ДНК (дезоксирибонуклеиновая кислота)

ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.

ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.

Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.

Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.

Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.

Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.

Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.

Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.

В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.

Таким образом,

  • ТИМИН (Т) комплементарен АДЕНИНУ (А),
  • ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.

Репликация ДНК

Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.

Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.

После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.

После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.

Таким образом, сохраняется и передается новому поколению исходная структура ДНК.

Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.

Видеофильм «ДНК. Код Жизни»

Рубрики: Нуклеиновые кислоты

Суперскрученная молекула

Сверхспирализованная форма ДНК возникает, когда двухцепочечная молекула совершает дополнительное закручивание. Оно может быть направлено по часовой стрелке (положительно) либо против (в этом случае говорят об отрицательной сверхспирализации). ДНК большинства организмов суперскручена отрицательно, то есть против основных витков «двойной спирали».

В результате образования дополнительных петель – супервитков – ДНК приобретает сложную пространственную конфигурацию. В клетках эукариот этот процесс происходит с формированием комплексов, в которых ДНК отрицательно навивается на гистоновые белковые комплексы и принимает вид нити с бусинами-нуклеосомами. Свободные участки нити называются линкерами. В поддержании суперскрученной формы молекулы ДНК принимают участие и негистоновые белки, а также неорганические соединения. Так образуется хроматин – вещество хромосом.

Хроматиновые нити с нуклеосомными бусинами способны к дальнейшему усложнению морфологии в процессе, называемом конденсацией хроматина.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector