Клетки крови. строение клеток крови, эритроциты, лейкоциты, тромбоциты, резус фактор
Содержание:
- Плазма крови – лечебное средство
- Иммунитет
- 58.2 Состав плазмы крови. Осмотическое давление крови фс ,обеспечивающая постоянство осмотическое давления крови.
- Заболевания, влияющие на свойства плазмы, и вопросы их терапии
- Норма форменных элементов в крови
- Почему вены синие, а не красные
- Переливание крови
- Лейкоциты (белые клетки крови)
- Органический состав крови человека
- Взаимосвязь в функционировании кровеносной и дыхательной систем в организме человека. Взаємозв’язок у функціонуванні кровоносної та дихальної систем в організмі людини
- Строение системы крови: виды гемоглобина
Плазма крови – лечебное средство
Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).
В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.
Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.
Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.
Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении – здоровым, а его плазма должна иметь определенный титр антител (не менее 1 : 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.
Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.
Иммунитет
Иммунитет — это невосприимчивость организма к инфекционным и неинфекционным агентам и веществам, обладающим антигенными свойствами. В иммунной реакции невосприимчивости, кроме клеток-фагоцитов, принимают участие и химические соединения — антитела (особые белки, обезвреживающие антигены — чужеродные клетки, белки и яды). В плазме крови антитела склеивают чужеродные белки или расщепляют их.
Антитела, обезвреживающие микробные яды (токсины), называют антитоксинами. Все антитела специфичны: они активны только по отношению к определенным микробам или их токсинам. Если в организме человека есть специфические антитела, он становится невосприимчивым к данным Инфекционным заболеваниям.
Открытия и идеи И. И. Мечникова о фагоцитозе и значительной роли в этом процессе лейкоцитов (в 1863 г. он произнес свою знаменитую речь о целебных силах организма, в которой впервые излагалась фагоцитарная теория иммунитета) легли в основу современного учения об иммунитете (от лат. «иммунис» — освобожденный). Эти открытия позволили достигнуть больших успехов в борьбе с инфекционными заболеваниями, которые на протяжении веков были подлинным бичом человечества.
Велика роль в предупреждении заразных болезней предохранительных и лечебных прививок — иммунизации с помощью вакцин и сывороток, создающих в организме искусственный активный или пассивный иммунитет.
Различают врожденный (видовой) и приобретенный (индивидуальный) виды иммунитета.
Врожденный иммунитет является наследственным признаком и обеспечивает невосприимчивость к тому или иному инфекционному заболеванию с момента рождения и наследуется от родителей. Причем иммунные тела могут проникать через плаценту из сосудов материнского организма в сосуды эмбриона или же новорожденные получают их с материнским молоком.
Приобретенный иммунитет делят на естественный и искусственный, а каждый из них разделяют на активный и пассивный.
Естественный активный иммунитет вырабатывается у человека в процессе перенесения инфекционного заболевания. Так, люди, перенесшие в детстве корь или коклюш, уже не заболевают ими повторно, так как у них в крови образовались защитные вещества — антитела.
Естественный пассивный иммунитет обусловлен переходом защитных антител из крови матери, в организме которой они образуются, через плаценту в кровь плода. Пассивным путем и через материнское молоко дети получают иммунитет по отношению к кори, скарлатине, дифтерии и др. Через 1–2 года, когда антитела, полученные от матери, разрушаются или частично удаляются из организма ребенка, восприимчивость его к указанным инфекциям резко возрастает.
Искусственный активный иммунитет возникает после прививки здоровым людям и животным убитых или ослабленных болезнетворных ядов — токсинов. Введение в организм этих препаратов — вакцин — вызывает заболевание в легкой форме и активизирует защитные силы организма, вызывая в нем образование соответствующих антител.
С этой целью в стране проводится планомерная вакцинация детей против кори, коклюша, дифтерии, полиомиелита, туберкулеза, столбняка и других, благодаря чему достигнуто значительное снижение числа заболеваний этими тяжелыми болезнями.
Искусственный пассивный иммунитет создается путем введения человеку сыворотки (плазма крови без белка фибрина), содержащей антитела и антитоксины против микробов и их ядов-токсинов. Сыворотки получают главным образом от лошадей, которых иммунизируют соответствующим токсином. Пассивно приобретенный иммунитет сохраняется обычно не больше месяца, но зато проявляется сразу же после введения лечебной сыворотки. Своевременно введенная лечебная сыворотка, содержащая уже готовые антитела, часто обеспечивает успешную борьбу с тяжелой инфекцией (например, дифтерией), которая развивается так быстро, что организм не успевает вырабатывать достаточное количество антител и больной может умереть.
Иммунитет фагоцитозом и выработкой антител защищает организм от инфекционных заболеваний, освобождает его от погибших, переродившихся и ставших чужеродными клеток, вызывает отторжение пересаженных чужеродных органов и тканей.
После некоторых инфекционных заболеваний иммунитет не вырабатывается, например, против ангины, которой можно болеть много раз.
58.2 Состав плазмы крови. Осмотическое давление крови фс ,обеспечивающая постоянство осмотическое давления крови.
В
состав плазмы крови входят вода (90—92%)
и сухой остаток (8—10%). Сухой остаток
состоит из органических и неорганических
веществ. К органическим веществам плазмы
крови относятся: 1) белки плазмы —
альбумины (около 4,5%), глобулины (2—3,5%),
фибриноген (0,2—0,4%). Общее количество
белка в плазме составляет 7—8%;2) небелковые
азотсодержащие соединения (аминокислоты,
полипептиды, мочевина, мочевая кислота,
креатин, креатинин, аммиак). Общее
количество небелкового азота в плазме
(так называемого остаточного азота)
составляет 11 —15 ммоль/л (30—40 мг%). При
нарушении функции почек, выделяющих
шлаки из организма, содержание остаточного
азота в крови резко возрастает;3)
безазотистые органические вещества:
глюкоза — 4,4—6,65 ммоль/л (80—120 мг%),
нейтральные жиры, липиды;4) ферменты и
проферменты: некоторые из них участвуют
в процессах свертывания крови и
фибринолиза, в частности протромбин и
профибринолизин. В плазме содержатся
также ферменты, расщепляющие гликоген,
жиры, белки и др.Неорганические вещества
плазмы крови составляют около 1 % от ее
состава. К этим веществам относятся
преимущественно катионы — Ка+, Са2+, К+,
Мg2+ и анионы Сl, НРO4, НСО3
Осмотическое
давление крови. Осмотическим давлением
называется сила, которая заставляет
переходить растворитель (для крови это
вода) через полупроницаемую мембрану
из менее в более концентрированный
раствор. Осмотическое давление крови
вычисляют криоскопическим методом с
помощью определения депрессии (точки
замерзания), которая для крови составляет
0,56—0,58°С. Депрессия молярного раствора
(раствор, в котором растворена 1
грамм-молекула вещества в 1 л воды)
соответствует 1,86°С. Подставив значения
в уравнение Клапейрона, легко рассчитать,
что осмотическое давление крови равно
приблизительно 7,6 атм.
Осмотическое
давление крови зависит в основном от
растворенных в ней низкомолекулярных
соединений, главным образом солей. Около
60% этого давления создается NaCl. Осмотическое
давление в крови, лимфе, тканевой
жидкости, тканях приблизительно одинаково
и отличается постоянством. Даже в
случаях, когда в кровь поступает
значительное количество воды или соли,
осмотическое давление не претерпевает
существенных изменений. При избыточном
поступлении в кровь вода быстро выводится
почками и переходит в ткани и клетки,
что восстанавливает исходную величину
осмотического давления. Если же в крови
повышается концентрация солей, то в
сосудистое русло переходит вода из
тканевой жидкости, а почки начинают
усиленно выводить соли. Продукты
переваривания белков, жиров и углеводов,
всасывающиеся в кровь и лимфу, а также
низкомолекулярные продукты клеточного
метаболизма могут изменять осмотическое
давление в небольших пределах.
Заболевания, влияющие на свойства плазмы, и вопросы их терапии
К таким заболеваниям относится несколько патологий, способных нарушить работу всего организма. Среди них есть и врожденные аномалии, и приобретенные на разных этапах жизненного цикла.
Коагулопатия
Классическим примером этой аномалии можно назвать гемофилию, обусловленную поломкой плазменного звена гемостаза. У больных появляется опасность спонтанного кровоизлияния в мозг, мышечные ткани, суставы. А в результате травмы или хирургических манипуляций возможно критическое снижение объема крови.
Врожденные формы коагулопатии не поддаются полному излечению. В таких ситуациях врачи могут лишь купировать основные симптомы, применив переливание плазмы, регулярно вводя кровоостанавливающие препараты. Приобретенные нарушения требуют полноценного обследования, точной коррекции вызвавшего их заболевания.
Тромбоцитопения
Этим термином обозначается состояние, при котором резко снижается количество тромбоцитов. Пациенты испытывают проблемы с остановками кровотечений, сталкиваются с повышенной кровоточивостью.
При легкой стадии назначают стероидные гормоны, введение иммуноглобулина, плазмаферез. При тяжелом течении нередко принимается решение об удалении селезенки.
Гематологами доказано, что тромбоцитопения – не самостоятельное заболевание. Она может быть лишь следствием другого недуга. Поэтому необходима тщательная диагностика и обязательная коррекция найденного нарушения.
Тромбоцитопатия
В отличие от проявлений тромбоцитопении, тромбоцитопатия проявляет себя не уменьшением количества форменных клеток, а снижением их активности. Однако результат тот же – расстройства свертывания.
Для уточнения диагноза назначают биохимию крови, в обязательном порядке проверяют печень. Выбор терапии зависит от особенностей основного заболевания, но в 90% случаев включает в себя прием глюкокортикоидов.
Анемия
Самый распространенный вариант – железодефицитная анемия. При заболевании заметно меняется состояние плазмы, фиксируется гипербилирубинемия. Из симптомов возможны проявления желтухи, головокружения, слабость, боли в печени, повышенная температура.
Лечение основано на введении плазмы извне, витаминотерапии, приеме глюкокортикоидных гормонов, иммунодепрессантов, противомалярийных препаратов. В некоторых ситуациях гематологи используют плазмозаменители, отмытые эритроциты.
Авитаминоз
Как и анемия, авитаминоз заметно меняет состояние плазмы. Поскольку он может быть вызван как банальным недостатком полезных веществ, так и заболеванием, лечение проводится с учетом основной причины: приемом витаминов, коррекцией исходного диагноза.
Аллергия
При аллергических реакциях в крови увеличивается содержание гистамина, простогландина, что заметно влияет на свойства плазмы. При этом страдают и находящиеся в ней белки, и микроэлементы.
Норма форменных элементов в крови
Для выполнения всех необходимых функций крови количество всех форменных элементов в ней должно отвечать определенным нормам. В зависимости от возраста эти показатели изменяются. В таблице можно найти данные о том, какие цифры считаются нормальными.
Норма анализа крови
Любые отклонения от нормы служат поводом к дальнейшему обследованию пациента
Для исключения ложных показателей человеку важно соблюдать все рекомендации по сдаче крови на лабораторное исследование. Сдавать анализ следует утром на голодный желудок
Вечером перед посещением больницы важно отказаться от острой, копченой, соленой пищи и алкогольных напитков. Забор крови осуществляется исключительно в условиях лаборатории с использованием стерильных приборов.
Регулярная сдача анализов и своевременное выявление тех или иных нарушений поможет вовремя диагностировать различные патологии, провести лечение, сохранить здоровье на долгие годы.
Почему вены синие, а не красные
Вены разносят бордовую кровь. Они кажутся синими из-за многих факторов. В первую очередь из-за цветовосприятия глаза человека.
Цвет – это длина волны света, исходящая от объекта или отражается объектом от другого источника света. Красный свет имеет самую большую длину волны (700 нм). Это значит, что он проходит через предметы и не отображается от них. Проходит он и через кожу и, доходя до вен, поглощается гемоглобином. Если направить красный свет на руку, он будет отражаться везде, кроме мест с венами. Там он превратится в черный, так как будет поглощен. С помощью этого трюка медики могут найти сложно доступные вены.
Фиолетовый свет – это самая короткая волна (400 нм). Синий имеет примерно такие же показатели – 475 нм. Он легко рассеивается и не проходит глубоко в кожу, а отражается от нее. Если посмотреть на руку под синим светом, никаких вен найти будет нельзя.
Внимание!
Этот трюк часто используют против тех, кто любит бывать в клубах или других местах. Фиолетовый или синий свет в туалете не оставляет шансов обнаружить свои вены.
Подставьте руку под обычный белый свет. В нем есть и другие цвета, не только белый. Вены будут синего оттенка, так как он отразится от нее, а красный будет проходить вглубь кожи и поглощаться там.
Почему же мы не видим другие сосуды, по которым течет кровь
Человек не видит сосуды, потому что они слишком глубоко под кожей. Свет туда не доходит. Если же кровеносные сосуд находится ближе, чем 0,5 мм, он поглощает уже весь синий свет. Красный же частично отражается,поэтому люди видят эту часть кожи румяной, розоватой. Вены, которые отчетливо видны, располагаются на расстоянии не больше 0,5 мм от поверхности кожи.
Почему мы не видим артерии из-под кожи
Большая часть крови находится именно в венах, поэтому они намного объемнее артерий и сосудов. Из-за того, что кровь оказывает сильное давление на артерии, они имеют более толстые стенки. Из-за этого они не такие прозрачные и не могут быть видны через кожу. Если бы их было видно, артерии, скорее всего, выглядели бы точно также, как вены. Хотя жидкость в них ярко-красная.
Какого же на самом деле цвета вены
Пустые кровеносные сосуды имеют красно-коричневый оттенок. Примерно такого же цвета и вены, так как различий между ними немного. У вен тонкие стенки, у артерий – более толстые и мускулистые. Эту разницу можно увидеть только при поперечном сечении.
Переливание крови
при некоторых заболеваниях или кровопотерях человеку делают переливание крови. Большая потеря крови нарушает постоянство внутренней среды организма, кровяное давление падает, уменьшается количество гемоглобина. В таких случаях в организм вводят кровь, взятую у здорового человека.
Переливанием крови пользовались с давних времен, но часто это заканчивалось смертельным исходом. Объясняется это тем, что донорские эритроциты (то есть эритроциты, взятые у человека, отдающего кровь), могут склеиваться в комочки, которые закрывают мелкие сосуды и нарушают кровообращение.
Склеивание эритроцитов — агглютинация — происходит в том случае, если в эритроцитах донора имеется склеиваемое вещество — агглютиноген, а в плазме крови реципиента (человека, которому переливают кровь) находится склеивающее вещество агглютинин. У различных людей в крови есть те или иные агглютинины и агглютиногены, и в связи с этим кровь всех людей разделена на 4 основные группы по их совместимости
Группы крови | Может отдавать кровь группам | Может принимать кровь групп |
I | I, II, III, IV | I |
II | II. IV | I. II |
III | III. IV | I. III |
IV | IV | I, II, III, IV |
Изучение групп крови позволило разработать правила ее переливания. Лица, дающие кровь, называются донорами, а лица, получающие ее, — реципиентами. При переливании крови строго соблюдают совместимость групп крови.
Любому реципиенту можно вводить кровь I группы, так как ее эритроциты не содержат агглютиногены и не склеиваются, поэтому лиц с I группой крови называют универсальными донорами, но им самим можно вводить кровь только I группы.
Кровь людей II группы можно переливать лицам, имеющим II и IV группы крови, кровь III группы — лицам III и IV. Кровь от донора IV группы можно переливать только лицам данной группы, но им самим можно переливать кровь всех четырех групп. Людей с IV группой крови называют универсальными реципиентами.
Переливанием крови лечат малокровие. Оно может быть вызвано влиянием различных отрицательных факторов, в результате чего в крови уменьшается количество эритроцитов, или понижается содержание в них гемоглобина. Малокровие возникает и при больших потерях крови, при недостаточном питании, нарушениях функций красного костного мозга и др. Малокровие излечимо: усиленное питание, свежий воздух помогают восстановить норму гемоглобина в крови.
Процесс свертывания крови осуществляется при участии белка протромбина, который переводит растворимый белок фибриноген в нерастворимый фибрин, образующий сгусток. В обычных условиях в кровеносных сосудах отсутствует активный фермент тромбин, поэтому кровь остается жидкой и не свертывается, но есть неактивный фермент протромбин, который образуется при участии витамина К в печени и костном мозге. Неактивный фермент активируется в присутствии солей кальция и переводится в тромбин при действии на него фермента тромбопластина, выделяемого красными кровяными тельцами — тромбоцитами.
При порезе или уколе оболочки тромбоцитов нарушаются, тромбопластин переходит в плазму и кровь свертывается. Образование тромба в местах повреждения сосудов — защитная реакция организма, предохраняющая его от кровопотери. Люди, у которых кровь не способна свертываться, страдают тяжелым заболеванием — гемофилией.
Лейкоциты (белые клетки крови)
Белые кровяные тельца или белые клетки крови, которые также называют ами, составляют вместе с тромбоцитами у здоровых людей лишь 1 % всех клеток крови. Нормальным считается уровень от 5.000 до 8.000 лейкоцитов в микролитре крови.
Лейкоциты отвечают за имунную защиту организма. Они распознают „чужаков“, например, , ы или грибы, и обезвреживают их. Если есть , количество лейкоцитов может сильно вырасти за короткое время. Благодаря этому организм быстро начинает бороться с возбудителями болезни.
Лейкоциты делят на разные группы в зависимости от их внешнего вида, от места, в котором они выросли, и от того, как именно они работают. Самую большую группу (от 60 до 70 %) составляют так называемые ы; от 20 до 30 % — ы и от 2 до 6 % — ы („клетки-пожиратели“).
Эти три вида клеток по-разному борются с возбудителями болезней, одновременно дополняя работу друг друга. Только благодаря тому, что они работают согласованно, организм обеспечивается оптимальной защитой от инфекций. Если количество белых клеток крови снижается, или они не могут работать нормально, например, при лейкозе, то защита организма от „чужаков“ (бактерий, вирусов, грибов) больше не может быть эффективной. Тогда организм начинает подхватывать разные инфекции.
Общее количество лейкоцитов измеряется в анализе крови . Характеристики различных типов белых кровяных клеток и их процентуальное соотношение могут исследоваться в так называемом дифференциальном анализе крови ().
Гранулоциты
Гранулоциты отвечают прежде всего за защиту организма от бактерий . Также они защищают от ов, грибов и паразитов (например, глистов). А называются они так потому, что в их клеточой жидкости есть зёрнышки (гранулы). В том месте, где появляется , они моментально накапливаются в большом количестве и становятся „первым эшелоном“, который отражает атаку возбудителей болезни.
Гранулоциты являются так называемыми фагоцитами. Они захватывают проникшего в организм противника и перевариваюи его (фагоцитоз). Таким же образом они очищают организм от мёртвых клеток. Кроме того, гранулоциты отвечают за работу с аллергическими и воспалительными реакциями, и с образованием гноя.
Уровень гранулоцитов в крови имеет в лечении онкологических болезней очень важное значение. Если во время лечения их количество становится меньше, чем 500 — 1.000 в 1 микролитре крови, то, как правило, очень сильно возрастает опасность инфекционных заражений даже от таких возбудителей, которые обычно вообще не опасны для здорового человека
Лимфоциты
Лимфоциты – это белые клетки крови, 70 % которых находится в тканях лимфатической системы. К таким тканям относятся, например, , селезёнка, глоточные миндалины (гланды) и .
Группы лимфоузлов находятся под челюстями, в подмышечных впадинах, на затылке, в области паха и в нижней части живота. Селезёнка – это орган, который находится слева в верхней части живота под рёбрами; вилочковая железа – небольшой орган за грудиной. Кроме того, лимфоциты находятся в лимфе. Лимфа – это бесцветная водянистая жидкость в лимфатических сосудах. Она, как и кровь, охватывает своей разветвлённой весь организм
Лимфоциты играют главную защитную роль в иммунной системе, так как они способны целенаправленно распознавать и уничтожать возбудителей болезней. Например, они играют важную роль при ной инфекции. Лимфоциты „организовывают“ работу ов, производя в организме так называемые . Атитела – это маленькие белковые молекулы, которые прицепляются к возбудителям болезни и таким образом помечают их как „врагов“ для фагоцитов.
Лимфоциты распознают и уничтожают клетки организма, поражённые вирусом, а также раковые клетки, и запоминают тех возбудителей болезни, с которыми они уже контактировали. Специалисты различают ы и ы, которые отличаются по своим иммунологическим характеристикам, а также выделяют некоторые другие, более редкие подгруппы лимфоцитов.
Моноциты
Моноциты – это клетки крови, которые уходят в ткани и там начинают работать как „крупные фагоциты“ (макрофаги), поглощая возбудителей болезней, инородные тела и умершие клетки, и зачищая от них организм. Кроме того часть поглощённых и переваренных организмов они презентируют на своей поверхности и таким образом активируют лимфоциты на иммунную защиту.
Органический состав крови человека
Кровь – это подвижная жидкость, которая состоит из плазмы и форменных элементов
В цельной крови и плазме человека находится большое количество органических соединений: белков, ферментов, кислот, липидов, липопротеинов и т.д. Все органические вещества в крови человека подразделяются на азотистые и безазотистые. Азот содержат некоторые белки и аминокислоты, а не содержат – глюкоза, холестерин, жирные кислоты.
Химический состав крови человека определяется органическими соединениями примерно на 9%. Неорганические соединения составляют не более 3% и около 90% — вода.
Органические соединения крови:
- Фибриноген. Это белок крови, который отвечает за образование тромбов. Именно он позволяет образовывать тромбы, сгустки, которые останавливают кровотечение в случае необходимости. Если происходит повреждение тканей, сосудов, уровень фибриногена повышается и свертываемость крови увеличивается. Этот белок входит в состав тромбоцитов. Его уровень значительно повышается перед родами, что позволяет предотвратить кровотечение.
- Альбумин. Это простой белок, входящий в состав крови человека. При анализе крови обычно говорят о сывороточном альбумине. За его выработку отвечает печень. Этот вид альбумина содержится в сыворотке крови. Он составляет более половины всех белков, содержащихся в плазме. Основная функция этого белка — транспортировка веществ, которые плохо растворяются в крови.
- Мочевая кислота. Когда под влиянием различных ферментов белковые соединения в крови разрушаются, начинает выделяться мочевая кислота. Она выводится из организма через кишечник и почки. Именно мочевая кислота, накапливаясь в организме, способна вызывать болезнь под название подагра (воспаление суставов).
- Холестерин. Это органическое соединение в крови, которое входит в состав мембран клеток тканей. Холестерин выполняет важную роль строительного клеточного материала, и его уровень должен поддерживаться. Однако при повышенном его содержании могут образовываться холестериновые бляшки, вызывающие закупорку сосудов и артерий.
- Липиды. Липиды, то есть жиры, и их соединения выполняют энергетическую функцию. Они обеспечивают организм энергией, участвуют в различных реакциях, обмене веществ. Чаще всего, говоря о липидах, подразумевают холестерин, но есть и другие разновидности (липиды высокой и низкой плотности).
- Креатинин. Креатинин – это вещество, которое образуется в результате химических реакций в крови. Он образуется в мышцах и участвует в энергетическом обмене.
Взаимосвязь в функционировании кровеносной и дыхательной систем в организме человека. Взаємозв’язок у функціонуванні кровоносної та дихальної систем в організмі людини
Система органов дыхания и кровеносная система объединяются в единую функциональную систему для выполнения общей функции – обеспечение организма кислородом и вывода углекислого газа. Газообмен в организме человека происходит в легких. Место обогащения крови кислородом называется альвеола. Стенка альвеолы состоит из одного слоя плоского эпителия и тонкого слоя эластичных волокон. Альвеолы покрыты густой сетью кровеносных капилляров, в которых осуществляется газообмен. В легочные капилляры по малому кругу кровообращения поступает венозная кровь. Она бедна кислородом и насыщена углекислым газом. Воздух в легочных альвеолах, наоборот, богат кислородом, а углекислого газа в нем значительно меньше. Поэтому в соответствии с законами осмоса и диффузии кислород из легочных альвеол устремляется в кровь, где соединяется с гемоглобином эритроцитов. Углекислый газ из крови, где он содержится в избытке, проникает в легочные альвеолы. Вдыхаемый и выдыхаемый воздух сильно отличаются по составу. В атмосферном воздухе содержание кислорода доходит до 21%, углекислого газа – 0,03-0,04%. В выдыхаемом воздухе количество кислорода снижается до 16%, содержание углекислого газа увеличивается до 4-4,5%. Из капилляров большого круга кровообращения кислород поступает в ткани. В артериальной крови кислорода больше, чем в клетках, поэтому он легко диффундирует в них. Углекислый газ из клеток поступает в кровь. В тканях артериальная кровь преобразуется в венозную. По венам большого круга кровообращения венозная кровь поступает в сердце, а оттуда опять в легкие. |
Система органів дихання і кровоносна система об’єднуються в єдину функціональну систему для виконання спільної функції — забезпечення організму киснем і виведення вуглекислого газу. Газообмін в організмі людини відбувається в легенях. Місце збагачення крові киснем називається альвеола. Стінка альвеоли складається із одного шару плоского епітелію і тонкого шару еластичних волокон. Альвеоли вкриті густою сіткою кровоносних капілярів, у яких відбувається газообмін. В легеневі капіляри по малому колу кровообігу надходить венозна кров. Вона бідна киснем і насичена вуглекислим газом. Повітря в легеневих альвеолах, навпаки, багате киснем, а вуглекислого газу в ньому значно менше. Тому згідно із законами осмосу і дифузії кисень з легеневих альвеол спрямовується в кров, де з’єднується з гемоглобіном еритроцитів. Вуглекислий газ із крові, де він міститься в надлишку, проникає в легеневі альвеоли. Повітря, що видихається і видихається, сильно відрізняються по складу. В атмосферному повітрі вміст кисню доходить до 21%, вуглекислого газу — 0,03-0,04%. У видихуваному повітрі кількість кисню знижується до 16%, вміст вуглекислого газу збільшується до 4-4,5%. З капілярів великого кола кровообігу кисень потрапляє в тканини. В артеріальній крові кисню більше, ніж у клітинах, тому він легко дифундує в них. Вуглекислий газ із клітин надходить у кров. У тканинах артеріальна кров перетворюється на венозну. По венах великого кола кровообігу венозна кров надходить в серце, а звідти знову в легені. |
Сердечно-сосудистая система человекаОписание курса Кровь и ее элементы (продолжение)
Строение системы крови: виды гемоглобина
Начинкой красных кровяных клеток является гемоглобин — особый белок, благодаря которому эритроциты выполняют функцию газообмена и поддерживают рН крови. В норме у мужчин в каждом литре крови содержится в среднем 130-160 г гемоглобина, а у женщин — 120-150 г.
Гемоглобин состоит из белка глобина и небелковой части — четырех молекул гема, в каждую из которых входит атом железа, способный присоединять или отдавать молекулу кислорода.
При соединении гемоглобина с кислородом получается оксигемоглобин — непрочное соединение, в виде которого переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбогемоглобина. В виде этого соединения, которое также легко распадается, переносится 20 % углекислого газа.
Существует несколько видов и соединений гемоглобина, отличающихся строением его белковой части — глобина. Так, в крови плода содержится гемоглобин F, тогда как в эритроцитах взрослого человека преобладает гемоглобин А.
Различия в белковой части строения системы крови определяют сродство гемоглобина к кислороду. У гемоглобина F оно намного больше, что помогает плоду не испытывать гипоксию при относительно низком содержании кислорода в его крови.
В медицине принято вычислять степень насыщения эритроцитов гемоглобином. Это так называемый цветовой показатель, который в норме равен 1 (нормохромные эритроциты)
Определение его важно для диагностики различных видов анемий. Так, гипохромные эритроциты (менее 0,85) свидетельствуют о железодефицитной анемии, а гиперхромные (более 1,1) — о нехватке витамина В12 или фолиевой кислоты