Лекция № 4. строение и функции нуклеиновых кислот атф

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

  • Перейти к лекции №3 «Строение и функции белков. Ферменты»

  • Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

  • Смотреть оглавление (лекции №1-25)

Принципы проведения качественного анализа на ВГC

В целом, к пациенту не имеется особых требований по подготовке к сдаче анализов. Все, что нужно сделать – сдать небольшое количество крови. Строго рекомендуется делать это натощак: в этом случае результаты диагностики будут более точными.

Стоит знать, что качественный анализ по методу ПЦР обычно назначается не сразу. Его рекомендуют проводить в следующих случаях:

  • Обнаружение антител вируса гепатита C в крови пациента.
  • Был обнаружен ВГC, но антитела в крови не имеются.
  • При контроле проводимой противовирусной терапии.

В первых двух случаях качественный анализ назначается после сероконверсии. Если антител нет, но вирус обнаружен, нужно понять: какой именно генотип ВГC присутствует, и почему иммунная система не реагирует. Если есть антитела, то анализ позволяет разобраться: нужно ли лечение, или организм самостоятельно поборол болезнь.

Наконец, при контроле противовирусной терапии анализ делается для проверки эффективности лечения. В частности, метод ПЦР позволит понять, как препараты воздействуют на уже обнаруженный ВГC. Если эффект слабый, то на основе анализов врач решает, нужно ли менять лечение. Стоит запомнить: при контроле противовирусной терапии требуется особо чувствительное оборудование, способное обнаружить РНК гепатита C даже в самой низкой концентрации.

Нуклеиновые кислоты – сложные биополимеры

Открытия в области молекулярной биологии, происшедшие в начале ХХ столетия, в частности, расшифровка строения дезоксирибонуклеиновой кислоты, послужили толчком для развития современной цитологии, генетики, биотехнологии и генной инженерии. С точки зрения органической химии ДНК и РНК представляют собой высокомолекулярные вещества, состоящие из многократно повторяющихся звеньев – мономеров, называемых также нуклеотидами. Известно, что они соединяются между собой, образуя цепи, способные к пространственной самоорганизации.

Такие макромолекулы ДНК часто связываются со специальными белками, имеющими особые свойства и называемыми гистонами. Нуклеопротеидные комплексы образуют особые структуры — нуклеосомы, которые, в свою очередь, входят в состав хромосом. Нуклеиновые кислоты могут находиться как в ядре, так и в цитоплазме клетки, присутствуя в составе некоторых ее органелл, например, митохондрий или хлоропластов.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

ДНК (дезоксирибонуклеиновая кислота)

ДНК (дезоксирибонуклеиновая кислота) – своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение.

ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни человека.

Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы.

Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи).

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей.

Вторичная структура ДНК представляет собой двойную спираль, состоящую из двух параллельных неразветвленных полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси.

Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы – снаружи.

Две спирали удерживаются вместе водородными связями между парами азотистых оснований. Водородные связи образуются между определенными основаниями: тимин (Т) образует водородные связи только с аденином (А), а цитозин (Ц) – только с гуанином (Г). В первой паре азотистых оснований две водородные связи, а во второй – три.

Такие пары оснований называются комплементарными парами. А такое пространственное соответствие молекул, способствующее их сближению и образованию водородных связей, называется комплементарностью. Комплементарность обусловливает спиралевидную модель ДНК.

Две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей определяет последовательность нуклеотидов в другой.

В каждой паре оснований, связанных водородными связями, одно из оснований – пуриновое, а другое пиримидиновое. Общее число остатков пуриновых оснований в молекуле ДНК равно числу остатков пиримидиновых оснований.

Таким образом,

  • ТИМИН (Т) комплементарен АДЕНИНУ (А),
  • ЦИТОЗИН (Ц) комплементарен ГУАНИНУ (Г).

Комплементарность полинуклеотидных цепей служит химической основой главной функции ДНК – хранения и передачи наследственных признаков.

Репликация ДНК

Двухспиральная структура ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликации) этой молекулы.

Перед удвоением водородные связи разрываются, и две цепи раскручиваются и расходятся. Каждая цепь затем служит матрицей для образования на ней комплементарной цепи.

После разделения цепей происходит саморепликация, т.е. образование новой двойной спирали, идентичной исходной.

После репликации образуются две дочерние молекулы ДНК, в каждой из которых одна спираль взята из родительской ДНК, а другая (комплементарная) синтезирована заново.

Таким образом, сохраняется и передается новому поколению исходная структура ДНК.

Длина полинуклеотидных цепей ДНК практически неограничена. Число пар оснований в двойной спирали может меняться от нескольких тысяч у простейших вирусов до сотен миллионов у человека.

Видеофильм «ДНК. Код Жизни»

Рубрики: Нуклеиновые кислоты

Как и для чего делают ДНК тест?

Так как ДНК содержится в каждой клетке нашего тела, изучая генетический материал – кровь, кожу, волосы, слюну и т.п. – с помощью принципов микробиологии – ученые могут узнать владельца конкретной ДНК. Однако для получения точных результатов специалисты советуют сдать кровь из вены. Сегодня анализ ДНК позволяет определить наследственную предрасположенность к разным заболеваниям, которыми страдали или страдают родственники человека. Одним из таких заболеваний является шизофрения – в своей предыдущей статье я подробно рассказывала о том, почему эту болезнь так сложно лечить и изучать.

Более того, проанализировав ДНК специалисты могут рассказать о том, какие заболевания могут возникнуть у человека в будущем, определить индивидуальную непереносимость лекарств, склонность к наркомании и алкоголизму и многое другое.

ДНК есть у всех живых организмов.

Наиболее распространенным тестом ДНК является метод полимеразной цепной реакции или ПЦР. На сегодняшний день это один из новейших и наиболее точных способов диагностики. Несмотря на то, что этот метод до сих пор считается экспериментальным, он широко и успешно применяется в медицине. Так, большинство тестов на наличие/отсутствие в организме нового коронавируса SARS-CoV-2, которые проводятся во всем мире, являются именно ПЦР-тесты. Метод ПЦР в 1993 году разработал ученый Кэри Муллис, который получил за свое открытие Нобелевскую премию. Суть метода заключается в применении особых ферментов, которые много раз копируют фрагменты ДНК возбудителей болезни (как, например, с коронавирусом) которые можно обнаружить в пробах генетического материала, например в крови. Затем специалисты сверяют полученные фрагменты с базой данной, что позволяет выявить тип возбудителя болезни и его количество в организме.

Так выглядит амплификатор

Однако выявление и определение склонности к заболеваниям не является единственной областью, в которой прибегают к использованию тестов ДНК. Так, появление ДНК-тестов – как в свое время дактилоскопия (метод определения отпечатков пальцев) – изменило криминалистику. Благодаря анализу ДНК следователи имеют возможность собрать генетический материал преступника и поймать его. Но самое популярное использование ДНК-тестов – определение отцовства. Возможно дело в том, что этот анализ позволяет получить практически 100% результат. Недавно мой коллега Николай Хижняк в своей статье подробно рассказал о будущих возможностях исследования ДНК, рекомендую к прочтению.

Подводя черту отмечу, что сегодня загадка кода ДНК еще не раскрыта. Мы стоим в самом начале познания, что же это такое на самом деле? Приоткрыв небольшую щелочку двери мы можем только догадываться о том, какие перспективы в будущем для человека может открыть понимание что такое ДНК и как мы можем использовать эти знания!

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Азотистое основание Название нуклеотида Обозначение
Аденин Адениловый А (A)
Гуанин Гуаниловый Г (G)
Тимин Тимидиловый Т (T)
Цитозин Цитидиловый Ц (C)

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3′-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5′-углеродом (его называют 5′-концом), другой — 3′-углеродом (3′-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа»), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3′-конца одной цепи находится 5′-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

ДНК человека

11. Около 8 процентов нашей ДНК состоит из древних вирусов, которые когда-то инфицировали людей.

12. Согласно ДНК исследованию, полинезийцы посетили Чили в 1300-х годах и обогнали Колумба, ступив на землю Америки почти на 200 лет раньше.

13. Около 2 грамм ДНК могло бы вместить всю мировую информацию, хранимую в цифровом виде.

14. Ученые записали песню из диснеевского мультфильма («It’s A Small World After All») в ДНК бактерии, которая устойчива к радиоактивности, чтобы на случай ядерной катастрофы люди в будущем или другие формы жизни смогли ее найти.

15. Замбийского врача Джона Шнеебергера обвинили в сексуальном насилии. Он имплантировал себе трубку с кровью другого человека, и когда у него брали кровь на ДНК, он смог обмануть специалистов. В конце концов, его все же удалось задержать.

16. ДНК людей на 99,9 процентов одинаковы. Отличия составляют последние 0,1 процент.

17. Генетическое содержание яйцеклетки можно заменить ДНК мужчины и затем оплодотворить сперматозоидом. Таким образом, двое мужчин могу стать родителями ребенка.

18. ДНК во всех ваших клетках могут растянуться на 16 миллиардов километров, если ее раскрутить. Это примерно расстояние от Земли до Плутона и обратно.

19. Хотя существуют сайты, предлагающие генетические тесты по слюне, подтверждающие ваше происхождение, ученые предупреждают, что это своего рода «генетическая астрология», и ее не стоит воспринимать серьезно.

20. 50 процентов вашего ДНК сходно с ДНК банана.

21. Ученые определили, что период полураспада ДНК составляет 521 год, а через 1,5 миллиона лет даже ДНК, сохраненное в лучшем виде, нельзя будет прочесть.

22. Из-за разрушения ДНК маловероятно, что мы когда-нибудь сможем клонировать динозавров или других доисторических животных.

23. Немецкая полиция однажды взяла образцы ДНК во время ювелирного ограбления. Образцы указали на близнецов Хассана и Аббаса О. Оба отрицали причастность к преступлению, несмотря на то, что полиция знала о том, что один из них совершил преступление. 

Они не смогли определить, кто же из них его совершил, так как ДНК было практически идентичным, а по закону Германии подозреваемых нельзя было держать неопределенный срок. Таким образом, у полиции не было другого выбора, как отпустить подозреваемых.

24. У всех людей неафриканского происхождения есть следы ДНК неандертальцев.

25. В ходе Проекта глубинного захоронения Хорнслета датского художника Кристиана фон Хорнслета в 2013 году в глубочайшее место океана  была опущена капсула времени. Капсула содержала образцы крови, волос и ДНК животных. Целью проекта стало сохранение ДНК, чтобы в будущем можно было вернуть к жизни вымершие виды.

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Рибонуклеиновая кислота

Молекула РНК состоит из одной полинуклеотидной нити (исключением являются двухцепочные структуры некоторых вирусов), которая может находиться как в ядре, так и в клеточной цитоплазме. Существует несколько видов рибонуклеиновых кислот, которые разнятся между собой строением и свойствами. Так, информационная РНК имеет наибольшую молекулярную массу. Она синтезируется в ядре клетки на одном из генов. Задача иРНК — перенести информацию о составе белка из ядра в цитоплазму. Транспортная форма нуклеиновой кислоты присоединяет мономеры белков – аминокислоты — и доставляет их к месту биосинтеза.

Наконец, рибосомная РНК формируется в ядрышке и участвует в синтезе белка. Как видим, функции ДНК и РНК в клеточном метаболизме разнообразны и очень важны. Они будут зависеть, прежде всего, от того, в клетках каких организмов находятся молекулы вещества наследственности. Так, у вирусов рибонуклеиновая кислота может выступать носителем наследственной информации, тогда как в клетках эукариотических организмов эту способность имеет только дезоксирибонуклеиновая кислота.

Пцр диагностика вирусного гепатита с

Количественная ПЦР – молекулярно-биологический анализ, при котором подсчитывается количество генетического материала возбудителя в крови. Исследование на гепатит С (количественно) выполняется после подтверждения диагноза для определения вирусной нагрузки. Полимеразная цепная реакция характеризуется высокой специфичностью и чувствительностью. Поэтому анализ считается золотым стандартом в диагностике гепатита С.

Среди воспалительных заболеваний, поражающих печень, особую угрозу для жизни человека представляет гепатит С. Причиной заражения может стать нарушение правил стерильности во время процедуры переливания крови. Намного реже инфицирование происходит в результате полового контакта, а также во время родов, когда болеющая мать заражает новорожденного.

Коварство гепатита С в длительном отсутствии симптомов, которые могли бы помочь раньше начать лечение. Обычно признаки проявляются, когда болезнь переходит в самую тяжелую стадию, а цирроз или карциному уже сложно вылечить.

С переходом острого гепатита в стадию хронической патологии, возможны следующие варианты развития болезни:

  • каждый пятый пациент выздоравливает после вовремя назначенного лечения;
  • часть больных переходит в группу носителей вируса (неактивная форма хронического заболевания);
  • у остальных заболевших прогресс хронической фазы подтверждают признаки поражения печени.

Момент перехода острого этапа в хроническую форму зафиксировать сложно. Причина в постепенном нарастании симптомов медленного поражения печени с отсутствием признаков желтухи.

Проявления HCV часто маскируются под симптоматику других заболеваний: повышенная температура, утомляемость, отсутствие аппетита. Потеря веса сопутствует скрытому прогрессированию болезни на протяжении десятков лет.

Популяция вируса скрытно поражает клеточную структуру крови, страдает также печень. Обнаружить фрагменты РНК возбудителя удается только при помощи ПЦР тестирования образцов крови на гепатит С.

Современные методики лечения новейшими препаратами позволяют не только вылечить патологию, но также избавить организм от вируса. Для этого необходимо установить его генотип и уровень концентрации в организме пациента.

Тест-системы некоторых лабораторий не оснащены соответствующими реагентами. Отсутствие возможности детерминирования субтипов генома приводит к выдаче результатов о невозможности типирования РНК.

В этом случае необходимо подтверждение диагноза методами дополнительных исследований с использованием основных маркеров гепатита. Обнаружение в крови человека иммуноглобулинов М и G сигнализирует о развитии в организме процесса, не характерного для здорового состояния.

Инфицирование печени приводит к серьезным последствиям, особенно если речь идет о гепатите С. Это заболевание протекает бессимптомно и почти не поддается лечению, за что прозвано «ласковым убийцей». Достаточно одного контакта с кровью инфицированного человека, чтобы заразиться.

Вирус HСV может никак себя не проявить даже после инкубационного периода. Однако у некоторых больных всё же наблюдаются характерные симптомы гепатита С: вялость, боли в животе, боль в суставах, отсутствие аппетита, рвота, осветление кала, потемнение мочи, желтуха. Как правило, они появляются спустя 6–7 недель после инфицирования.

Для подтверждения или опровержения диагноза необходимо сдать кровь на анализ. Сначала делается скрининг-тест на наличие антител к вирусу HСV. (эти белковые вещества вырабатываются иммунной системой). Если результат положительный, исследование продолжается. Применяется метод полимеразной цепной реакции (ПЦР), отличающийся высокой точностью.

Положительный анализ на гепатит С – крайне тревожный сигнал, который говорит о развитии болезни, способной спровоцировать развитие цирроза, рака печени или другого смертельно опасного недуга.

Вирусный гепатит опасен тем, что может не давать о себе знать десятилетиями, постепенно разрушая печень человека и подвергая опасности окружающих. Расшифровка анализа на вирусную нагрузку при гепатите С позволяет обнаружить эту болезнь на раннем этапе.

Это значит, что есть возможность вовремя начать лечение заболевания: чем раньше это сделать, тем выше шансы на полное выздоровление.

Вирусная нагрузка — это показатель, который отражает концентрацию вируса гепатита С в крови. Он определяется при помощи анализа, проводящегося по методике ПЦР, синонимом является РНК ВГС или RNA HCV.

Структура ДНК

синтезе двойной спирали ДНК

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Нуклеиновые кислоты – полимерные молекулы

Нуклеиновые кислоты — самые крупные нерегулярные полимерные органические молекулы, носящие название полинуклеотидов. Обычно ДНК намного крупнее РНК. Их мономерами являются нуклеотиды (нуклеозиды, дезоксинуклеозиды и др.). Каждый из них состоит из трёх компонентов:

  • пентозы, или пятиуглеродного сахара (рибоза в РНК и дезоксирибоза в ДНК);
  • фосфатной группы – остатка фосфорной кислоты (—PO 4 -);
  • азотистого основания.

Строение нуклеотида

Азотистые основания — это ароматические гетероциклические соединения, производные пиримидина или пурина. Нуклеотиды имеют пять основных типов азотистых оснований. Двухкольцевые пуриновые: аденин (Аde) и гуанин (Gua). Каждое из них содержится как в ДНК, так и в РНК. Остальные три основания представляют собой однокольцовые молекулы, производные пиримидина: цитозин (Cyt — есть как в ДНК, так и в РНК), тимин (Thy — только в ДНК), урацил (Ura — только в РНК).

Аденин и рибоза образуют нуклеозид аденозин (A), производные других азотистых оснований носят названия: гуанозин (G, Г), уридин (U, У), тимидин (Т), цитидин (C, Ц). При соединении азотистых оснований с дезоксирибозой образуются дезоксинуклеозиды. Все нуклеозидфосфаты объединяют под общим названием — нуклеотиды.

Строение пурина и пуриновых азотистых основанийСтроение пиримидина и пиримидиновых азотистых оснований

Нуклеиновые кислоты образуются путём реакции обезвоживания (конденсации, или дегидрации) между фосфатной группой одного нуклеотида и гидроксильной группой пентозы другого нуклеотида. Так получается фосфодиэфирная связь, объединяющая два углевода через фосфат.

В молекуле нуклеотида азотистое основание присоединено к первому атому углерода пентозы, а остаток фосфорной кислоты — к пятому. Получающаяся полинуклеотидная цепь полярна, она имеет два конца:

  • 5′ (пять-штрих положение) — углеродный атом в пятичленном моносахариде — рибозе или дезоксирибозе;
  • 3´ (три-штрих положение) — гидроксильная группа, взятая от углевода (ОН).

Эти концы в двойной спирали ДНК соединяются через фосфатную группу по типу голова-хвост (3′ к 5′) по принципу комплементарности, азотистыми основаниями внутрь спирали. Такая ориентация цепей называется антипараллельной.

Хромосома: определение и описание

Считается, что хромосомы это нуклеотидные биомеханизмы, которые находятся в ядре клетки. Эти биомеханизмы являются носителями и передатчиками наследственной информации, и в свою очередь содержат в себе двойную спираль дезоксирибонуклеиновой кислоты.

Чем отличаются хромосомы друг от друга

На примере Х хромосомы, цепи нуклеотидов могут пересекаться внутри хромосомы различно:

  1.  В перекрестии хромосомы, пересекаясь точно посередине друг друга.
  2.  Там же, но пересекаясь не точно.

Во втором случае одни концы получившегося перекрестия будут длиннее, а другие короче. Называют такие концы длинным и коротким плечом хромосомы. Отсюда и форма Y хромосомы, у которой ярко выражены длинные плечи, а короткие настолько не велики, что схематически не указываются.

Науке известных хромосомы трёх основных форм:

  •  Х хромосома, которая встречается у женщин и у мужчин.
  •  Y хромосома, встречающаяся только у мужчин.
  •  В хромосома изредка встречается у растений, и считается отмирающей, поскольку редко наследуется. Обычно её наличие в растении связывают с его слабостью и болезненностью.

Всего в клетке человеческого организма находится 46 парных хромосом: 22 пары «обычных» и одна пара половых (ХХ у женщин и XY у мужчин). Интересный факт – если добавить или отнять всего одну пару хромосом, человек может стать помидором или орангутангом.

Роль в клетке

Конечно одна, даже большая двойная спираль не способна вместить в себя весь объем информации необходимый для такого сложного проекта, как человеческое тело. Возможно, поэтому эти цепочки объединены в пары, что делает их похожими на букву «Х». Хромосомы в свою очередь тоже парные, и их у человека 46 пар.

Помимо того, что хромосома содержит в себе подробную инструкцию по функционированию клетки, она же путем активации актуальных моменту генов, провоцирует клетку вырабатывать определённые белки с самыми различными свойствами. Например, в борьбе с опухолями активно участвует ген старости, который старит её недоброкачественнее клетки и не даёт им бесконечно делиться.

Структура ДНК

Для того чтобы понять биологическую роль ДНК в клетке, необходимо ознакомиться со структурой данной молекулы.

Начнем с самого простого, все нуклеотиды в своей структуре имеют три компонента:

  • азотистое основание;
  • пентозный сахар;
  • фосфатную группу.

Каждый отдельный нуклеотид в молекуле ДНК содержит одно азотистое основание. Оно может быть абсолютно любым из четырех возможных:

  • А (аденин);
  • Г (гуанин);
  • Ц (цитозин);
  • Т (тимин).

А и Г — пурины, а Ц, Т и У (урацил) — пирамидины.

Существует несколько правил соотношения азотистых оснований, именуемых правилами Чаргаффа.

  1. А = Т.
  2. Г = Ц.
  3. (А + Г = Т + Ц) можем перенести все неизвестные в левую сторону и получить: (А + Г)/(Т + Ц) = 1 (эта формула является наиболее удобной при решении задач по биологии).
  4. А + Ц = Г + Т.
  5. Величина (А + Ц)/(Г + Т) постоянная. У человека она равняется 0,66, а вот, например, у бактерии — от 0,45 до 2,57.

Строение каждой молекулы ДНК напоминает двойную закрученную спираль

Обратите внимание на то, что полинуклеотидные цепи при этом являются антипараллельными. То есть расположение нуклеотидных пар у одной цепи имеет обратную последовательность, чем у другой

Каждый виток этой спирали содержит целых 10 нуклеотидных пар.

Как же скрепляются между собой эти цепочки? Почему молекула прочная и не распадается? Все дело в водородной связи между азотистыми основаниями (между А и Т — две, между Г и Ц — три) и гидрофобном взаимодействии.

В завершение раздела хочется упомянуть о том, что ДНК являются самыми крупными органическими молекулами, длина которых варьируется от 0,25 до 200 нм.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Чем ДНК отличается от РНК?

По своему химическому составу кислоты очень схожи друг с другом. Обе относятся к линейным полимерам и являют собой N-гликозид, созданный из остатков пятеуглеродного сахара.

Но разница в том, что сахарный остаток РНК – это рибоза, моносахарид из группы пентоз, легко растворяющийся в воде. Сахарный остаток ДНК – это дезоксирибоза, или производная рибозы, имеющая несколько иную структуру.

Но в отличие от рибозы, формирующей кольцо из 4 атомов углерода и 1 атома кислорода, в дезоксирибозе второй атом углерода замещается водородом.

Еще одно отличие между ДНК и РНК заключается в их размерах – первая молекула более крупная. Кроме этого, среди четырех нуклеотидов, входящих в ДНК, один представляет собой азотистое основание под названием тимин. Но в РНК вместо тимина присутствует его разновидность – урацил.

О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие — редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Функции ДНК и РНК в организме

По своему значению нуклеиновые кислоты, наряду с белками, являются важнейшими органическими соединениями. Они сохраняют и передают наследственные свойства и признаки от родительской особи к потомству. Давайте определим, чем отличаются между собой функции ДНК и РНК. Таблица, представленная ниже, покажет эти различия подробнее.

Вид Место в клетке Конфигурация Функция
ДНК ядро суперспираль сохранение и передача наследственной информации
ДНК

митохондрии

хлоропласты

кольцевая (плазмида) локальная передача наследственной информации
иРНК цитоплазма линейная снятие информации с гена
тРНК цитоплазма вторичная транспорт аминокислот
рРНК ядро и цитоплазма линейная образование рибосом
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector